relay.c 29 KB
Newer Older
1 2 3
/*
 * Public API and common code for kernel->userspace relay file support.
 *
4
 * See Documentation/filesystems/relay.txt for an overview.
5 6 7 8 9
 *
 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
 *
 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 11
 * November 2006 - CPU hotplug support by Mathieu Desnoyers
 * 	(mathieu.desnoyers@polymtl.ca)
12 13 14 15 16 17 18 19 20 21 22
 *
 * This file is released under the GPL.
 */
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/relay.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
23
#include <linux/cpu.h>
24
#include <linux/splice.h>
25 26 27 28

/* list of open channels, for cpu hotplug */
static DEFINE_MUTEX(relay_channels_mutex);
static LIST_HEAD(relay_channels);
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * close() vm_op implementation for relay file mapping.
 */
static void relay_file_mmap_close(struct vm_area_struct *vma)
{
	struct rchan_buf *buf = vma->vm_private_data;
	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
}

/*
 * nopage() vm_op implementation for relay file mapping.
 */
static struct page *relay_buf_nopage(struct vm_area_struct *vma,
				     unsigned long address,
				     int *type)
{
	struct page *page;
	struct rchan_buf *buf = vma->vm_private_data;
	unsigned long offset = address - vma->vm_start;

	if (address > vma->vm_end)
		return NOPAGE_SIGBUS; /* Disallow mremap */
	if (!buf)
		return NOPAGE_OOM;

	page = vmalloc_to_page(buf->start + offset);
	if (!page)
		return NOPAGE_OOM;
	get_page(page);

	if (type)
		*type = VM_FAULT_MINOR;

	return page;
}

/*
 * vm_ops for relay file mappings.
 */
static struct vm_operations_struct relay_file_mmap_ops = {
	.nopage = relay_buf_nopage,
	.close = relay_file_mmap_close,
};

/**
 *	relay_mmap_buf: - mmap channel buffer to process address space
 *	@buf: relay channel buffer
 *	@vma: vm_area_struct describing memory to be mapped
 *
 *	Returns 0 if ok, negative on error
 *
 *	Caller should already have grabbed mmap_sem.
 */
83
static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 85 86 87 88 89 90 91 92 93 94
{
	unsigned long length = vma->vm_end - vma->vm_start;
	struct file *filp = vma->vm_file;

	if (!buf)
		return -EBADF;

	if (length != (unsigned long)buf->chan->alloc_size)
		return -EINVAL;

	vma->vm_ops = &relay_file_mmap_ops;
95
	vma->vm_flags |= VM_DONTEXPAND;
96 97 98 99 100 101 102 103 104 105 106
	vma->vm_private_data = buf;
	buf->chan->cb->buf_mapped(buf, filp);

	return 0;
}

/**
 *	relay_alloc_buf - allocate a channel buffer
 *	@buf: the buffer struct
 *	@size: total size of the buffer
 *
107
 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
108
 *	passed in size will get page aligned, if it isn't already.
109
 */
110
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
111 112 113 114
{
	void *mem;
	unsigned int i, j, n_pages;

115 116
	*size = PAGE_ALIGN(*size);
	n_pages = *size >> PAGE_SHIFT;
117 118 119 120 121 122 123 124 125

	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
	if (!buf->page_array)
		return NULL;

	for (i = 0; i < n_pages; i++) {
		buf->page_array[i] = alloc_page(GFP_KERNEL);
		if (unlikely(!buf->page_array[i]))
			goto depopulate;
Tom Zanussi's avatar
Tom Zanussi committed
126
		set_page_private(buf->page_array[i], (unsigned long)buf);
127 128 129 130 131
	}
	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
	if (!mem)
		goto depopulate;

132
	memset(mem, 0, *size);
133 134 135 136 137 138 139 140 141 142 143 144
	buf->page_count = n_pages;
	return mem;

depopulate:
	for (j = 0; j < i; j++)
		__free_page(buf->page_array[j]);
	kfree(buf->page_array);
	return NULL;
}

/**
 *	relay_create_buf - allocate and initialize a channel buffer
145
 *	@chan: the relay channel
146
 *
147
 *	Returns channel buffer if successful, %NULL otherwise.
148
 */
149
static struct rchan_buf *relay_create_buf(struct rchan *chan)
150
{
151
	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
152 153 154 155 156 157 158
	if (!buf)
		return NULL;

	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
	if (!buf->padding)
		goto free_buf;

159
	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (!buf->start)
		goto free_buf;

	buf->chan = chan;
	kref_get(&buf->chan->kref);
	return buf;

free_buf:
	kfree(buf->padding);
	kfree(buf);
	return NULL;
}

/**
 *	relay_destroy_channel - free the channel struct
175
 *	@kref: target kernel reference that contains the relay channel
176 177 178
 *
 *	Should only be called from kref_put().
 */
179
static void relay_destroy_channel(struct kref *kref)
180 181 182 183 184 185 186 187 188
{
	struct rchan *chan = container_of(kref, struct rchan, kref);
	kfree(chan);
}

/**
 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 *	@buf: the buffer struct
 */
189
static void relay_destroy_buf(struct rchan_buf *buf)
190 191 192 193 194 195 196 197 198 199
{
	struct rchan *chan = buf->chan;
	unsigned int i;

	if (likely(buf->start)) {
		vunmap(buf->start);
		for (i = 0; i < buf->page_count; i++)
			__free_page(buf->page_array[i]);
		kfree(buf->page_array);
	}
200
	chan->buf[buf->cpu] = NULL;
201 202 203 204 205 206 207
	kfree(buf->padding);
	kfree(buf);
	kref_put(&chan->kref, relay_destroy_channel);
}

/**
 *	relay_remove_buf - remove a channel buffer
208
 *	@kref: target kernel reference that contains the relay buffer
209 210 211 212 213
 *
 *	Removes the file from the fileystem, which also frees the
 *	rchan_buf_struct and the channel buffer.  Should only be called from
 *	kref_put().
 */
214
static void relay_remove_buf(struct kref *kref)
215 216 217 218 219 220 221 222 223 224 225 226
{
	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
	buf->chan->cb->remove_buf_file(buf->dentry);
	relay_destroy_buf(buf);
}

/**
 *	relay_buf_empty - boolean, is the channel buffer empty?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is empty, 0 otherwise.
 */
227
static int relay_buf_empty(struct rchan_buf *buf)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
{
	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
}

/**
 *	relay_buf_full - boolean, is the channel buffer full?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is full, 0 otherwise.
 */
int relay_buf_full(struct rchan_buf *buf)
{
	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(relay_buf_full);

/*
 * High-level relay kernel API and associated functions.
 */

/*
 * rchan_callback implementations defining default channel behavior.  Used
 * in place of corresponding NULL values in client callback struct.
 */

/*
 * subbuf_start() default callback.  Does nothing.
 */
static int subbuf_start_default_callback (struct rchan_buf *buf,
					  void *subbuf,
					  void *prev_subbuf,
					  size_t prev_padding)
{
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * buf_mapped() default callback.  Does nothing.
 */
static void buf_mapped_default_callback(struct rchan_buf *buf,
					struct file *filp)
{
}

/*
 * buf_unmapped() default callback.  Does nothing.
 */
static void buf_unmapped_default_callback(struct rchan_buf *buf,
					  struct file *filp)
{
}

/*
 * create_buf_file_create() default callback.  Does nothing.
 */
static struct dentry *create_buf_file_default_callback(const char *filename,
						       struct dentry *parent,
						       int mode,
						       struct rchan_buf *buf,
						       int *is_global)
{
	return NULL;
}

/*
 * remove_buf_file() default callback.  Does nothing.
 */
static int remove_buf_file_default_callback(struct dentry *dentry)
{
	return -EINVAL;
}

/* relay channel default callbacks */
static struct rchan_callbacks default_channel_callbacks = {
	.subbuf_start = subbuf_start_default_callback,
	.buf_mapped = buf_mapped_default_callback,
	.buf_unmapped = buf_unmapped_default_callback,
	.create_buf_file = create_buf_file_default_callback,
	.remove_buf_file = remove_buf_file_default_callback,
};

/**
 *	wakeup_readers - wake up readers waiting on a channel
315
 *	@data: contains the channel buffer
316
 *
317
 *	This is the timer function used to defer reader waking.
318
 */
319
static void wakeup_readers(unsigned long data)
320
{
321
	struct rchan_buf *buf = (struct rchan_buf *)data;
322 323 324 325 326 327 328 329
	wake_up_interruptible(&buf->read_wait);
}

/**
 *	__relay_reset - reset a channel buffer
 *	@buf: the channel buffer
 *	@init: 1 if this is a first-time initialization
 *
330
 *	See relay_reset() for description of effect.
331
 */
332
static void __relay_reset(struct rchan_buf *buf, unsigned int init)
333 334 335 336 337 338
{
	size_t i;

	if (init) {
		init_waitqueue_head(&buf->read_wait);
		kref_init(&buf->kref);
339 340 341
		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
	} else
		del_timer_sync(&buf->timer);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	buf->subbufs_produced = 0;
	buf->subbufs_consumed = 0;
	buf->bytes_consumed = 0;
	buf->finalized = 0;
	buf->data = buf->start;
	buf->offset = 0;

	for (i = 0; i < buf->chan->n_subbufs; i++)
		buf->padding[i] = 0;

	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
}

/**
 *	relay_reset - reset the channel
 *	@chan: the channel
 *
 *	This has the effect of erasing all data from all channel buffers
 *	and restarting the channel in its initial state.  The buffers
 *	are not freed, so any mappings are still in effect.
 *
364
 *	NOTE. Care should be taken that the channel isn't actually
365 366 367 368 369 370 371 372 373
 *	being used by anything when this call is made.
 */
void relay_reset(struct rchan *chan)
{
	unsigned int i;

	if (!chan)
		return;

374
	if (chan->is_global && chan->buf[0]) {
375 376
		__relay_reset(chan->buf[0], 0);
		return;
377
	}
378 379 380 381 382 383

	mutex_lock(&relay_channels_mutex);
	for_each_online_cpu(i)
		if (chan->buf[i])
			__relay_reset(chan->buf[i], 0);
	mutex_unlock(&relay_channels_mutex);
384 385 386
}
EXPORT_SYMBOL_GPL(relay_reset);

387
/*
388 389
 *	relay_open_buf - create a new relay channel buffer
 *
390
 *	used by relay_open() and CPU hotplug.
391
 */
392
static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
393
{
394
 	struct rchan_buf *buf = NULL;
395
	struct dentry *dentry;
396
 	char *tmpname;
397

398
 	if (chan->is_global)
399 400
		return chan->buf[0];

401 402 403 404 405
	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 	if (!tmpname)
 		goto end;
 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);

406 407
	buf = relay_create_buf(chan);
	if (!buf)
408 409 410 411
 		goto free_name;

 	buf->cpu = cpu;
 	__relay_reset(buf, 1);
412 413

	/* Create file in fs */
414 415 416 417
 	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
 					   buf, &chan->is_global);
 	if (!dentry)
 		goto free_buf;
418 419 420

	buf->dentry = dentry;

421 422 423 424 425 426 427 428 429
 	if(chan->is_global) {
 		chan->buf[0] = buf;
 		buf->cpu = 0;
  	}

 	goto free_name;

free_buf:
 	relay_destroy_buf(buf);
430
 	buf = NULL;
431 432 433
free_name:
 	kfree(tmpname);
end:
434 435 436 437 438 439 440 441 442 443 444
	return buf;
}

/**
 *	relay_close_buf - close a channel buffer
 *	@buf: channel buffer
 *
 *	Marks the buffer finalized and restores the default callbacks.
 *	The channel buffer and channel buffer data structure are then freed
 *	automatically when the last reference is given up.
 */
445
static void relay_close_buf(struct rchan_buf *buf)
446 447
{
	buf->finalized = 1;
448
	del_timer_sync(&buf->timer);
449 450 451
	kref_put(&buf->kref, relay_remove_buf);
}

452
static void setup_callbacks(struct rchan *chan,
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
				   struct rchan_callbacks *cb)
{
	if (!cb) {
		chan->cb = &default_channel_callbacks;
		return;
	}

	if (!cb->subbuf_start)
		cb->subbuf_start = subbuf_start_default_callback;
	if (!cb->buf_mapped)
		cb->buf_mapped = buf_mapped_default_callback;
	if (!cb->buf_unmapped)
		cb->buf_unmapped = buf_unmapped_default_callback;
	if (!cb->create_buf_file)
		cb->create_buf_file = create_buf_file_default_callback;
	if (!cb->remove_buf_file)
		cb->remove_buf_file = remove_buf_file_default_callback;
	chan->cb = cb;
}

473 474 475 476 477 478
/**
 * 	relay_hotcpu_callback - CPU hotplug callback
 * 	@nb: notifier block
 * 	@action: hotplug action to take
 * 	@hcpu: CPU number
 *
479
 * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
480 481 482 483 484 485 486 487 488 489
 */
static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
				unsigned long action,
				void *hcpu)
{
	unsigned int hotcpu = (unsigned long)hcpu;
	struct rchan *chan;

	switch(action) {
	case CPU_UP_PREPARE:
490
	case CPU_UP_PREPARE_FROZEN:
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		mutex_lock(&relay_channels_mutex);
		list_for_each_entry(chan, &relay_channels, list) {
			if (chan->buf[hotcpu])
				continue;
			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
			if(!chan->buf[hotcpu]) {
				printk(KERN_ERR
					"relay_hotcpu_callback: cpu %d buffer "
					"creation failed\n", hotcpu);
				mutex_unlock(&relay_channels_mutex);
				return NOTIFY_BAD;
			}
		}
		mutex_unlock(&relay_channels_mutex);
		break;
	case CPU_DEAD:
507
	case CPU_DEAD_FROZEN:
508 509 510 511 512 513 514
		/* No need to flush the cpu : will be flushed upon
		 * final relay_flush() call. */
		break;
	}
	return NOTIFY_OK;
}

515 516 517
/**
 *	relay_open - create a new relay channel
 *	@base_filename: base name of files to create
518
 *	@parent: dentry of parent directory, %NULL for root directory
519 520 521
 *	@subbuf_size: size of sub-buffers
 *	@n_subbufs: number of sub-buffers
 *	@cb: client callback functions
522
 *	@private_data: user-defined data
523
 *
524
 *	Returns channel pointer if successful, %NULL otherwise.
525 526 527 528
 *
 *	Creates a channel buffer for each cpu using the sizes and
 *	attributes specified.  The created channel buffer files
 *	will be named base_filename0...base_filenameN-1.  File
529
 *	permissions will be %S_IRUSR.
530 531 532 533 534
 */
struct rchan *relay_open(const char *base_filename,
			 struct dentry *parent,
			 size_t subbuf_size,
			 size_t n_subbufs,
535 536
			 struct rchan_callbacks *cb,
			 void *private_data)
537 538 539 540 541 542 543 544 545
{
	unsigned int i;
	struct rchan *chan;
	if (!base_filename)
		return NULL;

	if (!(subbuf_size && n_subbufs))
		return NULL;

546
	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
547 548 549 550 551 552 553
	if (!chan)
		return NULL;

	chan->version = RELAYFS_CHANNEL_VERSION;
	chan->n_subbufs = n_subbufs;
	chan->subbuf_size = subbuf_size;
	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
554 555 556
	chan->parent = parent;
	chan->private_data = private_data;
	strlcpy(chan->base_filename, base_filename, NAME_MAX);
557 558 559
	setup_callbacks(chan, cb);
	kref_init(&chan->kref);

560
	mutex_lock(&relay_channels_mutex);
561
	for_each_online_cpu(i) {
562
		chan->buf[i] = relay_open_buf(chan, i);
563 564 565
		if (!chan->buf[i])
			goto free_bufs;
	}
566 567
	list_add(&chan->list, &relay_channels);
	mutex_unlock(&relay_channels_mutex);
568 569 570 571

	return chan;

free_bufs:
572
	for_each_online_cpu(i) {
573 574 575 576 577 578
		if (!chan->buf[i])
			break;
		relay_close_buf(chan->buf[i]);
	}

	kref_put(&chan->kref, relay_destroy_channel);
579
	mutex_unlock(&relay_channels_mutex);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	return NULL;
}
EXPORT_SYMBOL_GPL(relay_open);

/**
 *	relay_switch_subbuf - switch to a new sub-buffer
 *	@buf: channel buffer
 *	@length: size of current event
 *
 *	Returns either the length passed in or 0 if full.
 *
 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 *	updating padding counts, waking up readers, etc.
 */
size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
{
	void *old, *new;
	size_t old_subbuf, new_subbuf;

	if (unlikely(length > buf->chan->subbuf_size))
		goto toobig;

	if (buf->offset != buf->chan->subbuf_size + 1) {
		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
		buf->padding[old_subbuf] = buf->prev_padding;
		buf->subbufs_produced++;
607 608 609
		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
			buf->padding[old_subbuf];
		smp_mb();
610 611 612 613 614 615 616 617
		if (waitqueue_active(&buf->read_wait))
			/*
			 * Calling wake_up_interruptible() from here
			 * will deadlock if we happen to be logging
			 * from the scheduler (trying to re-grab
			 * rq->lock), so defer it.
			 */
			__mod_timer(&buf->timer, jiffies + 1);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	}

	old = buf->data;
	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
	new = buf->start + new_subbuf * buf->chan->subbuf_size;
	buf->offset = 0;
	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
		buf->offset = buf->chan->subbuf_size + 1;
		return 0;
	}
	buf->data = new;
	buf->padding[new_subbuf] = 0;

	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
		goto toobig;

	return length;

toobig:
	buf->chan->last_toobig = length;
	return 0;
}
EXPORT_SYMBOL_GPL(relay_switch_subbuf);

/**
 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 *	@chan: the channel
 *	@cpu: the cpu associated with the channel buffer to update
 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 *
 *	Adds to the channel buffer's consumed sub-buffer count.
 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 *	not the total consumed.
 *
652
 *	NOTE. Kernel clients don't need to call this function if the channel
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
 *	mode is 'overwrite'.
 */
void relay_subbufs_consumed(struct rchan *chan,
			    unsigned int cpu,
			    size_t subbufs_consumed)
{
	struct rchan_buf *buf;

	if (!chan)
		return;

	if (cpu >= NR_CPUS || !chan->buf[cpu])
		return;

	buf = chan->buf[cpu];
	buf->subbufs_consumed += subbufs_consumed;
	if (buf->subbufs_consumed > buf->subbufs_produced)
		buf->subbufs_consumed = buf->subbufs_produced;
}
EXPORT_SYMBOL_GPL(relay_subbufs_consumed);

/**
 *	relay_close - close the channel
 *	@chan: the channel
 *
 *	Closes all channel buffers and frees the channel.
 */
void relay_close(struct rchan *chan)
{
	unsigned int i;

	if (!chan)
		return;

687 688 689 690 691 692 693
	mutex_lock(&relay_channels_mutex);
	if (chan->is_global && chan->buf[0])
		relay_close_buf(chan->buf[0]);
	else
		for_each_possible_cpu(i)
			if (chan->buf[i])
				relay_close_buf(chan->buf[i]);
694 695 696 697 698 699

	if (chan->last_toobig)
		printk(KERN_WARNING "relay: one or more items not logged "
		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
		       chan->last_toobig, chan->subbuf_size);

700
	list_del(&chan->list);
701
	kref_put(&chan->kref, relay_destroy_channel);
702
	mutex_unlock(&relay_channels_mutex);
703 704 705 706 707 708 709
}
EXPORT_SYMBOL_GPL(relay_close);

/**
 *	relay_flush - close the channel
 *	@chan: the channel
 *
710
 *	Flushes all channel buffers, i.e. forces buffer switch.
711 712 713 714 715 716 717 718
 */
void relay_flush(struct rchan *chan)
{
	unsigned int i;

	if (!chan)
		return;

719 720 721
	if (chan->is_global && chan->buf[0]) {
		relay_switch_subbuf(chan->buf[0], 0);
		return;
722
	}
723 724 725 726 727 728

	mutex_lock(&relay_channels_mutex);
	for_each_possible_cpu(i)
		if (chan->buf[i])
			relay_switch_subbuf(chan->buf[i], 0);
	mutex_unlock(&relay_channels_mutex);
729 730 731 732 733 734 735 736 737 738 739 740
}
EXPORT_SYMBOL_GPL(relay_flush);

/**
 *	relay_file_open - open file op for relay files
 *	@inode: the inode
 *	@filp: the file
 *
 *	Increments the channel buffer refcount.
 */
static int relay_file_open(struct inode *inode, struct file *filp)
{
741
	struct rchan_buf *buf = inode->i_private;
742 743 744 745 746 747 748 749 750 751 752
	kref_get(&buf->kref);
	filp->private_data = buf;

	return 0;
}

/**
 *	relay_file_mmap - mmap file op for relay files
 *	@filp: the file
 *	@vma: the vma describing what to map
 *
753
 *	Calls upon relay_mmap_buf() to map the file into user space.
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
 */
static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct rchan_buf *buf = filp->private_data;
	return relay_mmap_buf(buf, vma);
}

/**
 *	relay_file_poll - poll file op for relay files
 *	@filp: the file
 *	@wait: poll table
 *
 *	Poll implemention.
 */
static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
{
	unsigned int mask = 0;
	struct rchan_buf *buf = filp->private_data;

	if (buf->finalized)
		return POLLERR;

	if (filp->f_mode & FMODE_READ) {
		poll_wait(filp, &buf->read_wait, wait);
		if (!relay_buf_empty(buf))
			mask |= POLLIN | POLLRDNORM;
	}

	return mask;
}

/**
 *	relay_file_release - release file op for relay files
 *	@inode: the inode
 *	@filp: the file
 *
 *	Decrements the channel refcount, as the filesystem is
 *	no longer using it.
 */
static int relay_file_release(struct inode *inode, struct file *filp)
{
	struct rchan_buf *buf = filp->private_data;
	kref_put(&buf->kref, relay_remove_buf);

	return 0;
}

801
/*
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
 *	relay_file_read_consume - update the consumed count for the buffer
 */
static void relay_file_read_consume(struct rchan_buf *buf,
				    size_t read_pos,
				    size_t bytes_consumed)
{
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;
	size_t read_subbuf;

	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
		buf->bytes_consumed = 0;
	}

	buf->bytes_consumed += bytes_consumed;
818 819 820 821
	if (!read_pos)
		read_subbuf = buf->subbufs_consumed % n_subbufs;
	else
		read_subbuf = read_pos / buf->chan->subbuf_size;
822 823 824 825 826 827 828 829 830
	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
		    (buf->offset == subbuf_size))
			return;
		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
		buf->bytes_consumed = 0;
	}
}

831
/*
832 833 834 835 836 837
 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 */
static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
{
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;
838 839
	size_t produced = buf->subbufs_produced;
	size_t consumed = buf->subbufs_consumed;
840

841
	relay_file_read_consume(buf, read_pos, 0);
842

843 844 845 846
	if (unlikely(buf->offset > subbuf_size)) {
		if (produced == consumed)
			return 0;
		return 1;
847 848
	}

849
	if (unlikely(produced - consumed >= n_subbufs)) {
850
		consumed = produced - n_subbufs + 1;
851
		buf->subbufs_consumed = consumed;
852
		buf->bytes_consumed = 0;
853
	}
854

855 856 857 858 859
	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;

	if (consumed > produced)
		produced += n_subbufs * subbuf_size;
860

861
	if (consumed == produced)
862 863 864 865 866 867 868
		return 0;

	return 1;
}

/**
 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
869 870
 *	@read_pos: file read position
 *	@buf: relay channel buffer
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
 */
static size_t relay_file_read_subbuf_avail(size_t read_pos,
					   struct rchan_buf *buf)
{
	size_t padding, avail = 0;
	size_t read_subbuf, read_offset, write_subbuf, write_offset;
	size_t subbuf_size = buf->chan->subbuf_size;

	write_subbuf = (buf->data - buf->start) / subbuf_size;
	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
	read_subbuf = read_pos / subbuf_size;
	read_offset = read_pos % subbuf_size;
	padding = buf->padding[read_subbuf];

	if (read_subbuf == write_subbuf) {
		if (read_offset + padding < write_offset)
			avail = write_offset - (read_offset + padding);
	} else
		avail = (subbuf_size - padding) - read_offset;

	return avail;
}

/**
 *	relay_file_read_start_pos - find the first available byte to read
896 897
 *	@read_pos: file read position
 *	@buf: relay channel buffer
898
 *
899
 *	If the @read_pos is in the middle of padding, return the
900 901 902 903 904 905 906 907 908
 *	position of the first actually available byte, otherwise
 *	return the original value.
 */
static size_t relay_file_read_start_pos(size_t read_pos,
					struct rchan_buf *buf)
{
	size_t read_subbuf, padding, padding_start, padding_end;
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;
909
	size_t consumed = buf->subbufs_consumed % n_subbufs;
910

911 912
	if (!read_pos)
		read_pos = consumed * subbuf_size + buf->bytes_consumed;
913 914 915 916 917 918 919 920 921 922 923 924 925 926
	read_subbuf = read_pos / subbuf_size;
	padding = buf->padding[read_subbuf];
	padding_start = (read_subbuf + 1) * subbuf_size - padding;
	padding_end = (read_subbuf + 1) * subbuf_size;
	if (read_pos >= padding_start && read_pos < padding_end) {
		read_subbuf = (read_subbuf + 1) % n_subbufs;
		read_pos = read_subbuf * subbuf_size;
	}

	return read_pos;
}

/**
 *	relay_file_read_end_pos - return the new read position
927 928 929
 *	@read_pos: file read position
 *	@buf: relay channel buffer
 *	@count: number of bytes to be read
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
 */
static size_t relay_file_read_end_pos(struct rchan_buf *buf,
				      size_t read_pos,
				      size_t count)
{
	size_t read_subbuf, padding, end_pos;
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;

	read_subbuf = read_pos / subbuf_size;
	padding = buf->padding[read_subbuf];
	if (read_pos % subbuf_size + count + padding == subbuf_size)
		end_pos = (read_subbuf + 1) * subbuf_size;
	else
		end_pos = read_pos + count;
	if (end_pos >= subbuf_size * n_subbufs)
		end_pos = 0;

	return end_pos;
}

951
/*
952
 *	subbuf_read_actor - read up to one subbuf's worth of data
953
 */
954 955 956 957 958
static int subbuf_read_actor(size_t read_start,
			     struct rchan_buf *buf,
			     size_t avail,
			     read_descriptor_t *desc,
			     read_actor_t actor)
959 960
{
	void *from;
961
	int ret = 0;
962 963

	from = buf->start + read_start;
964
	ret = avail;
965
	if (copy_to_user(desc->arg.buf, from, avail)) {
966 967
		desc->error = -EFAULT;
		ret = 0;
968
	}
969 970 971 972
	desc->arg.data += ret;
	desc->written += ret;
	desc->count -= ret;

973 974 975
	return ret;
}

976 977 978 979 980 981
typedef int (*subbuf_actor_t) (size_t read_start,
			       struct rchan_buf *buf,
			       size_t avail,
			       read_descriptor_t *desc,
			       read_actor_t actor);

982
/*
983 984
 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
 */
985 986 987 988
static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
					subbuf_actor_t subbuf_actor,
					read_actor_t actor,
					read_descriptor_t *desc)
989
{
990 991 992
	struct rchan_buf *buf = filp->private_data;
	size_t read_start, avail;
	int ret;
993

994
	if (!desc->count)
995 996
		return 0;

997
	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
998
	do {
999 1000 1001 1002 1003 1004
		if (!relay_file_read_avail(buf, *ppos))
			break;

		read_start = relay_file_read_start_pos(*ppos, buf);
		avail = relay_file_read_subbuf_avail(read_start, buf);
		if (!avail)
1005 1006
			break;

1007 1008 1009
		avail = min(desc->count, avail);
		ret = subbuf_actor(read_start, buf, avail, desc, actor);
		if (desc->error < 0)
1010 1011 1012 1013 1014 1015
			break;

		if (ret) {
			relay_file_read_consume(buf, read_start, ret);
			*ppos = relay_file_read_end_pos(buf, read_start, ret);
		}
1016
	} while (desc->count && ret);
1017
	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1018

1019
	return desc->written;
1020 1021 1022 1023 1024 1025 1026
}

static ssize_t relay_file_read(struct file *filp,
			       char __user *buffer,
			       size_t count,
			       loff_t *ppos)
{
1027 1028 1029 1030 1031 1032 1033
	read_descriptor_t desc;
	desc.written = 0;
	desc.count = count;
	desc.arg.buf = buffer;
	desc.error = 0;
	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
				       NULL, &desc);
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
{
	rbuf->bytes_consumed += bytes_consumed;

	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
	}
}

Tom Zanussi's avatar
Tom Zanussi committed
1046 1047
static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
				   struct pipe_buffer *buf)
1048
{
Tom Zanussi's avatar
Tom Zanussi committed
1049 1050 1051
	struct rchan_buf *rbuf;

	rbuf = (struct rchan_buf *)page_private(buf->page);
1052
	relay_consume_bytes(rbuf, buf->private);
Tom Zanussi's avatar
Tom Zanussi committed
1053 1054 1055 1056 1057 1058
}

static struct pipe_buf_operations relay_pipe_buf_ops = {
	.can_merge = 0,
	.map = generic_pipe_buf_map,
	.unmap = generic_pipe_buf_unmap,
1059
	.confirm = generic_pipe_buf_confirm,
Tom Zanussi's avatar
Tom Zanussi committed
1060 1061 1062 1063 1064
	.release = relay_pipe_buf_release,
	.steal = generic_pipe_buf_steal,
	.get = generic_pipe_buf_get,
};

1065
/*
Tom Zanussi's avatar
Tom Zanussi committed
1066 1067 1068 1069 1070 1071 1072 1073 1074
 *	subbuf_splice_actor - splice up to one subbuf's worth of data
 */
static int subbuf_splice_actor(struct file *in,
			       loff_t *ppos,
			       struct pipe_inode_info *pipe,
			       size_t len,
			       unsigned int flags,
			       int *nonpad_ret)
{
1075
	unsigned int pidx, poff, total_len, subbuf_pages, ret;
Tom Zanussi's avatar
Tom Zanussi committed
1076 1077
	struct rchan_buf *rbuf = in->private_data;
	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1078 1079 1080
	uint64_t pos = (uint64_t) *ppos;
	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
	size_t read_start = (size_t) do_div(pos, alloc_size);
Tom Zanussi's avatar
Tom Zanussi committed
1081 1082 1083
	size_t read_subbuf = read_start / subbuf_size;
	size_t padding = rbuf->padding[read_subbuf];
	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1084 1085 1086 1087 1088 1089 1090 1091 1092
	struct page *pages[PIPE_BUFFERS];
	struct partial_page partial[PIPE_BUFFERS];
	struct splice_pipe_desc spd = {
		.pages = pages,
		.nr_pages = 0,
		.partial = partial,
		.flags = flags,
		.ops = &relay_pipe_buf_ops,
	};
Tom Zanussi's avatar
Tom Zanussi committed
1093 1094 1095 1096

	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
		return 0;

1097 1098 1099 1100 1101
	/*
	 * Adjust read len, if longer than what is available
	 */
	if (len > (subbuf_size - read_start % subbuf_size))
		len = subbuf_size - read_start % subbuf_size;
Tom Zanussi's avatar
Tom Zanussi committed
1102 1103 1104 1105 1106

	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
	poff = read_start & ~PAGE_MASK;

1107 1108 1109
	for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
		unsigned int this_len, this_end, private;
		unsigned int cur_pos = read_start + total_len;
Tom Zanussi's avatar
Tom Zanussi committed
1110

1111
		if (!len)
Tom Zanussi's avatar
Tom Zanussi committed
1112 1113
			break;

1114 1115
		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
		private = this_len;
Tom Zanussi's avatar
Tom Zanussi committed
1116

1117 1118
		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
		spd.partial[spd.nr_pages].offset = poff;
Tom Zanussi's avatar
Tom Zanussi committed
1119

1120 1121 1122 1123
		this_end = cur_pos + this_len;
		if (this_end >= nonpad_end) {
			this_len = nonpad_end - cur_pos;
			private = this_len + padding;
Tom Zanussi's avatar
Tom Zanussi committed
1124
		}
1125 1126
		spd.partial[spd.nr_pages].len = this_len;
		spd.partial[spd.nr_pages].private = private;
Tom Zanussi's avatar
Tom Zanussi committed
1127

1128 1129 1130 1131
		len -= this_len;
		total_len += this_len;
		poff = 0;
		pidx = (pidx + 1) % subbuf_pages;
Tom Zanussi's avatar
Tom Zanussi committed
1132

1133 1134
		if (this_end >= nonpad_end) {
			spd.nr_pages++;
Tom Zanussi's avatar
Tom Zanussi committed
1135 1136 1137 1138
			break;
		}
	}

1139 1140
	if (!spd.nr_pages)
		return 0;
Tom Zanussi's avatar
Tom Zanussi committed
1141

1142 1143 1144
	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
	if (ret < 0 || ret < total_len)
		return ret;
Tom Zanussi's avatar
Tom Zanussi committed
1145

1146 1147 1148 1149
        if (read_start + ret == nonpad_end)
                ret += padding;

        return ret;
Tom Zanussi's avatar
Tom Zanussi committed
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

static ssize_t relay_file_splice_read(struct file *in,
				      loff_t *ppos,
				      struct pipe_inode_info *pipe,
				      size_t len,
				      unsigned int flags)
{
	ssize_t spliced;
	int ret;
	int nonpad_ret = 0;

	ret = 0;
	spliced = 0;

	while (len) {
		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
		if (ret < 0)
			break;
		else if (!ret) {
			if (spliced)
				break;
			if (flags & SPLICE_F_NONBLOCK) {
				ret = -EAGAIN;
				break;
			}
		}

		*ppos += ret;
		if (ret > len)
			len = 0;
		else
			len -= ret;
		spliced += nonpad_ret;
		nonpad_ret = 0;
	}

	if (spliced)
		return spliced;

	return ret;
1191 1192
}

1193
const struct file_operations relay_file_operations = {
1194 1195 1196 1197 1198 1199
	.open		= relay_file_open,
	.poll		= relay_file_poll,
	.mmap		= relay_file_mmap,
	.read		= relay_file_read,
	.llseek		= no_llseek,
	.release	= relay_file_release,
Tom Zanussi's avatar
Tom Zanussi committed
1200
	.splice_read	= relay_file_splice_read,
1201 1202
};
EXPORT_SYMBOL_GPL(relay_file_operations);
1203 1204 1205 1206 1207 1208 1209 1210 1211

static __init int relay_init(void)
{

	hotcpu_notifier(relay_hotcpu_callback, 0);
	return 0;
}

module_init(relay_init);