stop_machine.c 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * kernel/stop_machine.c
 *
 * Copyright (C) 2008, 2005	IBM Corporation.
 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2 and any later version.
10
 */
11
#include <linux/completion.h>
Linus Torvalds's avatar
Linus Torvalds committed
12
#include <linux/cpu.h>
13
#include <linux/init.h>
14
#include <linux/kthread.h>
15
#include <linux/export.h>
16
#include <linux/percpu.h>
17 18
#include <linux/sched.h>
#include <linux/stop_machine.h>
19
#include <linux/interrupt.h>
20
#include <linux/kallsyms.h>
21
#include <linux/smpboot.h>
22
#include <linux/atomic.h>
23
#include <linux/nmi.h>
24
#include <linux/sched/wake_q.h>
25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * Structure to determine completion condition and record errors.  May
 * be shared by works on different cpus.
 */
struct cpu_stop_done {
	atomic_t		nr_todo;	/* nr left to execute */
	int			ret;		/* collected return value */
	struct completion	completion;	/* fired if nr_todo reaches 0 */
};

/* the actual stopper, one per every possible cpu, enabled on online cpus */
struct cpu_stopper {
38 39
	struct task_struct	*thread;

40
	raw_spinlock_t		lock;
41
	bool			enabled;	/* is this stopper enabled? */
42
	struct list_head	works;		/* list of pending works */
43 44

	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 46 47
};

static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48
static bool stop_machine_initialized = false;
49

50 51 52
/* static data for stop_cpus */
static DEFINE_MUTEX(stop_cpus_mutex);
static bool stop_cpus_in_progress;
53

54 55 56 57 58 59 60 61
static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
{
	memset(done, 0, sizeof(*done));
	atomic_set(&done->nr_todo, nr_todo);
	init_completion(&done->completion);
}

/* signal completion unless @done is NULL */
62
static void cpu_stop_signal_done(struct cpu_stop_done *done)
63
{
64 65
	if (atomic_dec_and_test(&done->nr_todo))
		complete(&done->completion);
66 67
}

68
static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 70
					struct cpu_stop_work *work,
					struct wake_q_head *wakeq)
71 72
{
	list_add_tail(&work->list, &stopper->works);
73
	wake_q_add(wakeq, stopper->thread);
74 75
}

76
/* queue @work to @stopper.  if offline, @work is completed immediately */
77
static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78
{
79
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80
	DEFINE_WAKE_Q(wakeq);
81
	unsigned long flags;
82
	bool enabled;
83

84
	preempt_disable();
85
	raw_spin_lock_irqsave(&stopper->lock, flags);
86 87
	enabled = stopper->enabled;
	if (enabled)
88
		__cpu_stop_queue_work(stopper, work, &wakeq);
89
	else if (work->done)
90
		cpu_stop_signal_done(work->done);
91
	raw_spin_unlock_irqrestore(&stopper->lock, flags);
92

93
	wake_up_q(&wakeq);
94
	preempt_enable();
95

96
	return enabled;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

/**
 * stop_one_cpu - stop a cpu
 * @cpu: cpu to stop
 * @fn: function to execute
 * @arg: argument to @fn
 *
 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 * the highest priority preempting any task on the cpu and
 * monopolizing it.  This function returns after the execution is
 * complete.
 *
 * This function doesn't guarantee @cpu stays online till @fn
 * completes.  If @cpu goes down in the middle, execution may happen
 * partially or fully on different cpus.  @fn should either be ready
 * for that or the caller should ensure that @cpu stays online until
 * this function completes.
 *
 * CONTEXT:
 * Might sleep.
 *
 * RETURNS:
 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
 * otherwise, the return value of @fn.
 */
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
	struct cpu_stop_done done;
	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };

	cpu_stop_init_done(&done, 1);
129 130
	if (!cpu_stop_queue_work(cpu, &work))
		return -ENOENT;
131 132 133 134 135
	/*
	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
	 * cycle by doing a preemption:
	 */
	cond_resched();
136
	wait_for_completion(&done.completion);
137
	return done.ret;
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* This controls the threads on each CPU. */
enum multi_stop_state {
	/* Dummy starting state for thread. */
	MULTI_STOP_NONE,
	/* Awaiting everyone to be scheduled. */
	MULTI_STOP_PREPARE,
	/* Disable interrupts. */
	MULTI_STOP_DISABLE_IRQ,
	/* Run the function */
	MULTI_STOP_RUN,
	/* Exit */
	MULTI_STOP_EXIT,
};

struct multi_stop_data {
155
	cpu_stop_fn_t		fn;
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	void			*data;
	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
	unsigned int		num_threads;
	const struct cpumask	*active_cpus;

	enum multi_stop_state	state;
	atomic_t		thread_ack;
};

static void set_state(struct multi_stop_data *msdata,
		      enum multi_stop_state newstate)
{
	/* Reset ack counter. */
	atomic_set(&msdata->thread_ack, msdata->num_threads);
	smp_wmb();
	msdata->state = newstate;
}

/* Last one to ack a state moves to the next state. */
static void ack_state(struct multi_stop_data *msdata)
{
	if (atomic_dec_and_test(&msdata->thread_ack))
		set_state(msdata, msdata->state + 1);
}

/* This is the cpu_stop function which stops the CPU. */
static int multi_cpu_stop(void *data)
{
	struct multi_stop_data *msdata = data;
	enum multi_stop_state curstate = MULTI_STOP_NONE;
	int cpu = smp_processor_id(), err = 0;
	unsigned long flags;
	bool is_active;

	/*
	 * When called from stop_machine_from_inactive_cpu(), irq might
	 * already be disabled.  Save the state and restore it on exit.
	 */
	local_save_flags(flags);

	if (!msdata->active_cpus)
		is_active = cpu == cpumask_first(cpu_online_mask);
	else
		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);

	/* Simple state machine */
	do {
		/* Chill out and ensure we re-read multi_stop_state. */
204
		cpu_relax_yield();
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
		if (msdata->state != curstate) {
			curstate = msdata->state;
			switch (curstate) {
			case MULTI_STOP_DISABLE_IRQ:
				local_irq_disable();
				hard_irq_disable();
				break;
			case MULTI_STOP_RUN:
				if (is_active)
					err = msdata->fn(msdata->data);
				break;
			default:
				break;
			}
			ack_state(msdata);
220 221 222 223 224 225 226
		} else if (curstate > MULTI_STOP_PREPARE) {
			/*
			 * At this stage all other CPUs we depend on must spin
			 * in the same loop. Any reason for hard-lockup should
			 * be detected and reported on their side.
			 */
			touch_nmi_watchdog();
227 228 229 230 231 232 233
		}
	} while (curstate != MULTI_STOP_EXIT);

	local_irq_restore(flags);
	return err;
}

234 235 236
static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
				    int cpu2, struct cpu_stop_work *work2)
{
237 238
	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
239
	DEFINE_WAKE_Q(wakeq);
240
	int err;
241

242
retry:
243 244 245 246 247 248 249 250
	/*
	 * The waking up of stopper threads has to happen in the same
	 * scheduling context as the queueing.  Otherwise, there is a
	 * possibility of one of the above stoppers being woken up by another
	 * CPU, and preempting us. This will cause us to not wake up the other
	 * stopper forever.
	 */
	preempt_disable();
251 252
	raw_spin_lock_irq(&stopper1->lock);
	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
253

254 255
	if (!stopper1->enabled || !stopper2->enabled) {
		err = -ENOENT;
256
		goto unlock;
257 258
	}

259 260 261 262 263 264 265 266 267 268
	/*
	 * Ensure that if we race with __stop_cpus() the stoppers won't get
	 * queued up in reverse order leading to system deadlock.
	 *
	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
	 * queued a work on cpu1 but not on cpu2, we hold both locks.
	 *
	 * It can be falsely true but it is safe to spin until it is cleared,
	 * queue_stop_cpus_work() does everything under preempt_disable().
	 */
269 270 271 272
	if (unlikely(stop_cpus_in_progress)) {
		err = -EDEADLK;
		goto unlock;
	}
273 274

	err = 0;
275 276
	__cpu_stop_queue_work(stopper1, work1, &wakeq);
	__cpu_stop_queue_work(stopper2, work2, &wakeq);
277

278
unlock:
279 280
	raw_spin_unlock(&stopper2->lock);
	raw_spin_unlock_irq(&stopper1->lock);
281

282
	if (unlikely(err == -EDEADLK)) {
283 284
		preempt_enable();

285 286
		while (stop_cpus_in_progress)
			cpu_relax();
287

288 289
		goto retry;
	}
290

291 292
	wake_up_q(&wakeq);
	preempt_enable();
293

294
	return err;
295
}
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * stop_two_cpus - stops two cpus
 * @cpu1: the cpu to stop
 * @cpu2: the other cpu to stop
 * @fn: function to execute
 * @arg: argument to @fn
 *
 * Stops both the current and specified CPU and runs @fn on one of them.
 *
 * returns when both are completed.
 */
int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
{
	struct cpu_stop_done done;
	struct cpu_stop_work work1, work2;
311 312 313
	struct multi_stop_data msdata;

	msdata = (struct multi_stop_data){
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		.fn = fn,
		.data = arg,
		.num_threads = 2,
		.active_cpus = cpumask_of(cpu1),
	};

	work1 = work2 = (struct cpu_stop_work){
		.fn = multi_cpu_stop,
		.arg = &msdata,
		.done = &done
	};

	cpu_stop_init_done(&done, 2);
	set_state(&msdata, MULTI_STOP_PREPARE);

329 330
	if (cpu1 > cpu2)
		swap(cpu1, cpu2);
331
	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
332
		return -ENOENT;
333 334

	wait_for_completion(&done.completion);
335
	return done.ret;
336 337
}

338 339 340 341 342
/**
 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
 * @cpu: cpu to stop
 * @fn: function to execute
 * @arg: argument to @fn
343
 * @work_buf: pointer to cpu_stop_work structure
344 345 346 347 348 349 350
 *
 * Similar to stop_one_cpu() but doesn't wait for completion.  The
 * caller is responsible for ensuring @work_buf is currently unused
 * and will remain untouched until stopper starts executing @fn.
 *
 * CONTEXT:
 * Don't care.
351 352 353 354
 *
 * RETURNS:
 * true if cpu_stop_work was queued successfully and @fn will be called,
 * false otherwise.
355
 */
356
bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
357 358 359
			struct cpu_stop_work *work_buf)
{
	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
360
	return cpu_stop_queue_work(cpu, work_buf);
361 362
}

363
static bool queue_stop_cpus_work(const struct cpumask *cpumask,
364 365
				 cpu_stop_fn_t fn, void *arg,
				 struct cpu_stop_done *done)
366 367 368
{
	struct cpu_stop_work *work;
	unsigned int cpu;
369
	bool queued = false;
370 371 372 373 374 375

	/*
	 * Disable preemption while queueing to avoid getting
	 * preempted by a stopper which might wait for other stoppers
	 * to enter @fn which can lead to deadlock.
	 */
376 377
	preempt_disable();
	stop_cpus_in_progress = true;
378 379 380 381 382
	for_each_cpu(cpu, cpumask) {
		work = &per_cpu(cpu_stopper.stop_work, cpu);
		work->fn = fn;
		work->arg = arg;
		work->done = done;
383 384
		if (cpu_stop_queue_work(cpu, work))
			queued = true;
385
	}
386 387
	stop_cpus_in_progress = false;
	preempt_enable();
388 389

	return queued;
390
}
391

392 393 394 395 396 397
static int __stop_cpus(const struct cpumask *cpumask,
		       cpu_stop_fn_t fn, void *arg)
{
	struct cpu_stop_done done;

	cpu_stop_init_done(&done, cpumask_weight(cpumask));
398 399
	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
		return -ENOENT;
400
	wait_for_completion(&done.completion);
401
	return done.ret;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
}

/**
 * stop_cpus - stop multiple cpus
 * @cpumask: cpus to stop
 * @fn: function to execute
 * @arg: argument to @fn
 *
 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
 * @fn is run in a process context with the highest priority
 * preempting any task on the cpu and monopolizing it.  This function
 * returns after all executions are complete.
 *
 * This function doesn't guarantee the cpus in @cpumask stay online
 * till @fn completes.  If some cpus go down in the middle, execution
 * on the cpu may happen partially or fully on different cpus.  @fn
 * should either be ready for that or the caller should ensure that
 * the cpus stay online until this function completes.
 *
 * All stop_cpus() calls are serialized making it safe for @fn to wait
 * for all cpus to start executing it.
 *
 * CONTEXT:
 * Might sleep.
 *
 * RETURNS:
 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
 * @cpumask were offline; otherwise, 0 if all executions of @fn
 * returned 0, any non zero return value if any returned non zero.
 */
int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
	int ret;

	/* static works are used, process one request at a time */
	mutex_lock(&stop_cpus_mutex);
	ret = __stop_cpus(cpumask, fn, arg);
	mutex_unlock(&stop_cpus_mutex);
	return ret;
}

/**
 * try_stop_cpus - try to stop multiple cpus
 * @cpumask: cpus to stop
 * @fn: function to execute
 * @arg: argument to @fn
 *
 * Identical to stop_cpus() except that it fails with -EAGAIN if
 * someone else is already using the facility.
 *
 * CONTEXT:
 * Might sleep.
 *
 * RETURNS:
 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
 * @fn(@arg) was not executed at all because all cpus in @cpumask were
 * offline; otherwise, 0 if all executions of @fn returned 0, any non
 * zero return value if any returned non zero.
 */
int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
	int ret;

	/* static works are used, process one request at a time */
	if (!mutex_trylock(&stop_cpus_mutex))
		return -EAGAIN;
	ret = __stop_cpus(cpumask, fn, arg);
	mutex_unlock(&stop_cpus_mutex);
	return ret;
}

473 474 475 476 477 478
static int cpu_stop_should_run(unsigned int cpu)
{
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
	unsigned long flags;
	int run;

479
	raw_spin_lock_irqsave(&stopper->lock, flags);
480
	run = !list_empty(&stopper->works);
481
	raw_spin_unlock_irqrestore(&stopper->lock, flags);
482 483 484 485
	return run;
}

static void cpu_stopper_thread(unsigned int cpu)
486
{
487
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
488 489 490 491
	struct cpu_stop_work *work;

repeat:
	work = NULL;
492
	raw_spin_lock_irq(&stopper->lock);
493 494 495 496 497
	if (!list_empty(&stopper->works)) {
		work = list_first_entry(&stopper->works,
					struct cpu_stop_work, list);
		list_del_init(&work->list);
	}
498
	raw_spin_unlock_irq(&stopper->lock);
499 500 501 502 503

	if (work) {
		cpu_stop_fn_t fn = work->fn;
		void *arg = work->arg;
		struct cpu_stop_done *done = work->done;
504
		int ret;
505

506 507
		/* cpu stop callbacks must not sleep, make in_atomic() == T */
		preempt_count_inc();
508
		ret = fn(arg);
509 510 511 512 513
		if (done) {
			if (ret)
				done->ret = ret;
			cpu_stop_signal_done(done);
		}
514
		preempt_count_dec();
515
		WARN_ONCE(preempt_count(),
516
			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
517 518
		goto repeat;
	}
519 520
}

521 522 523 524 525 526 527 528 529 530 531 532
void stop_machine_park(int cpu)
{
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
	/*
	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
	 * the pending works before it parks, until then it is fine to queue
	 * the new works.
	 */
	stopper->enabled = false;
	kthread_park(stopper->thread);
}

533 534
extern void sched_set_stop_task(int cpu, struct task_struct *stop);

535 536
static void cpu_stop_create(unsigned int cpu)
{
537
	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
538 539 540
}

static void cpu_stop_park(unsigned int cpu)
541 542 543
{
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);

544
	WARN_ON(!list_empty(&stopper->works));
545
}
546

547 548 549 550
void stop_machine_unpark(int cpu)
{
	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);

551
	stopper->enabled = true;
552 553 554
	kthread_unpark(stopper->thread);
}

555
static struct smp_hotplug_thread cpu_stop_threads = {
556
	.store			= &cpu_stopper.thread,
557 558 559 560 561 562
	.thread_should_run	= cpu_stop_should_run,
	.thread_fn		= cpu_stopper_thread,
	.thread_comm		= "migration/%u",
	.create			= cpu_stop_create,
	.park			= cpu_stop_park,
	.selfparking		= true,
563 564 565 566 567 568 569 570 571
};

static int __init cpu_stop_init(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);

572
		raw_spin_lock_init(&stopper->lock);
573 574 575
		INIT_LIST_HEAD(&stopper->works);
	}

576
	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
577
	stop_machine_unpark(raw_smp_processor_id());
578
	stop_machine_initialized = true;
579 580 581
	return 0;
}
early_initcall(cpu_stop_init);
Linus Torvalds's avatar
Linus Torvalds committed
582

583 584
int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
			    const struct cpumask *cpus)
Linus Torvalds's avatar
Linus Torvalds committed
585
{
586 587 588 589 590 591
	struct multi_stop_data msdata = {
		.fn = fn,
		.data = data,
		.num_threads = num_online_cpus(),
		.active_cpus = cpus,
	};
592

593 594
	lockdep_assert_cpus_held();

595 596 597 598 599 600 601 602 603
	if (!stop_machine_initialized) {
		/*
		 * Handle the case where stop_machine() is called
		 * early in boot before stop_machine() has been
		 * initialized.
		 */
		unsigned long flags;
		int ret;

604
		WARN_ON_ONCE(msdata.num_threads != 1);
605 606 607 608 609 610 611 612 613

		local_irq_save(flags);
		hard_irq_disable();
		ret = (*fn)(data);
		local_irq_restore(flags);

		return ret;
	}

614
	/* Set the initial state and stop all online cpus. */
615 616
	set_state(&msdata, MULTI_STOP_PREPARE);
	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
Linus Torvalds's avatar
Linus Torvalds committed
617 618
}

619
int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
Linus Torvalds's avatar
Linus Torvalds committed
620 621 622 623
{
	int ret;

	/* No CPUs can come up or down during this. */
624 625 626
	cpus_read_lock();
	ret = stop_machine_cpuslocked(fn, data, cpus);
	cpus_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
627 628
	return ret;
}
629
EXPORT_SYMBOL_GPL(stop_machine);
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/**
 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
 * @fn: the function to run
 * @data: the data ptr for the @fn()
 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
 *
 * This is identical to stop_machine() but can be called from a CPU which
 * is not active.  The local CPU is in the process of hotplug (so no other
 * CPU hotplug can start) and not marked active and doesn't have enough
 * context to sleep.
 *
 * This function provides stop_machine() functionality for such state by
 * using busy-wait for synchronization and executing @fn directly for local
 * CPU.
 *
 * CONTEXT:
 * Local CPU is inactive.  Temporarily stops all active CPUs.
 *
 * RETURNS:
 * 0 if all executions of @fn returned 0, any non zero return value if any
 * returned non zero.
 */
653
int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
654 655
				  const struct cpumask *cpus)
{
656
	struct multi_stop_data msdata = { .fn = fn, .data = data,
657 658 659 660 661 662
					    .active_cpus = cpus };
	struct cpu_stop_done done;
	int ret;

	/* Local CPU must be inactive and CPU hotplug in progress. */
	BUG_ON(cpu_active(raw_smp_processor_id()));
663
	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
664 665 666 667 668 669

	/* No proper task established and can't sleep - busy wait for lock. */
	while (!mutex_trylock(&stop_cpus_mutex))
		cpu_relax();

	/* Schedule work on other CPUs and execute directly for local CPU */
670
	set_state(&msdata, MULTI_STOP_PREPARE);
671
	cpu_stop_init_done(&done, num_active_cpus());
672
	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
673
			     &done);
674
	ret = multi_cpu_stop(&msdata);
675 676 677 678 679 680 681 682

	/* Busy wait for completion. */
	while (!completion_done(&done.completion))
		cpu_relax();

	mutex_unlock(&stop_cpus_mutex);
	return ret ?: done.ret;
}