f2fs.h 43.2 KB
Newer Older
Jaegeuk Kim's avatar
Jaegeuk Kim committed
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * fs/f2fs/f2fs.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _LINUX_F2FS_H
#define _LINUX_F2FS_H

#include <linux/types.h>
#include <linux/page-flags.h>
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
20
#include <linux/kobject.h>
21
#include <linux/sched.h>
22

23 24
#ifdef CONFIG_F2FS_CHECK_FS
#define f2fs_bug_on(condition)	BUG_ON(condition)
25
#define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 27
#else
#define f2fs_bug_on(condition)
28
#define f2fs_down_write(x, y)	down_write(x)
29 30
#endif

31 32 33 34 35 36 37 38 39 40
/*
 * For mount options
 */
#define F2FS_MOUNT_BG_GC		0x00000001
#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
#define F2FS_MOUNT_DISCARD		0x00000004
#define F2FS_MOUNT_NOHEAP		0x00000008
#define F2FS_MOUNT_XATTR_USER		0x00000010
#define F2FS_MOUNT_POSIX_ACL		0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
41
#define F2FS_MOUNT_INLINE_XATTR		0x00000080
42
#define F2FS_MOUNT_INLINE_DATA		0x00000100
43
#define F2FS_MOUNT_FLUSH_MERGE		0x00000200
Jaegeuk Kim's avatar
Jaegeuk Kim committed
44
#define F2FS_MOUNT_NOBARRIER		0x00000400
45 46 47 48 49 50 51 52 53

#define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
#define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)

#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
		typecheck(unsigned long long, b) &&			\
		((long long)((a) - (b)) > 0))

54 55 56 57
typedef u32 block_t;	/*
			 * should not change u32, since it is the on-disk block
			 * address format, __le32.
			 */
58 59 60 61 62 63
typedef u32 nid_t;

struct f2fs_mount_info {
	unsigned int	opt;
};

Jaegeuk Kim's avatar
Jaegeuk Kim committed
64 65 66
#define CRCPOLY_LE 0xedb88320

static inline __u32 f2fs_crc32(void *buf, size_t len)
67
{
Jaegeuk Kim's avatar
Jaegeuk Kim committed
68 69 70 71 72 73 74 75 76 77
	unsigned char *p = (unsigned char *)buf;
	__u32 crc = F2FS_SUPER_MAGIC;
	int i;

	while (len--) {
		crc ^= *p++;
		for (i = 0; i < 8; i++)
			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
	}
	return crc;
78 79
}

Jaegeuk Kim's avatar
Jaegeuk Kim committed
80
static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
81
{
Jaegeuk Kim's avatar
Jaegeuk Kim committed
82
	return f2fs_crc32(buf, buf_size) == blk_crc;
83 84 85 86 87 88 89 90 91 92
}

/*
 * For checkpoint manager
 */
enum {
	NAT_BITMAP,
	SIT_BITMAP
};

93
/*
94
 * For CP/NAT/SIT/SSA readahead
95 96 97 98
 */
enum {
	META_CP,
	META_NAT,
99 100
	META_SIT,
	META_SSA
101 102
};

103 104 105
/* for the list of ino */
enum {
	ORPHAN_INO,		/* for orphan ino list */
106 107
	APPEND_INO,		/* for append ino list */
	UPDATE_INO,		/* for update ino list */
108 109 110 111
	MAX_INO_ENTRY,		/* max. list */
};

struct ino_entry {
112 113 114 115 116 117 118 119 120 121
	struct list_head list;	/* list head */
	nid_t ino;		/* inode number */
};

/* for the list of directory inodes */
struct dir_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
};

122 123 124 125 126 127 128
/* for the list of blockaddresses to be discarded */
struct discard_entry {
	struct list_head list;	/* list head */
	block_t blkaddr;	/* block address to be discarded */
	int len;		/* # of consecutive blocks of the discard */
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* for the list of fsync inodes, used only during recovery */
struct fsync_inode_entry {
	struct list_head list;	/* list head */
	struct inode *inode;	/* vfs inode pointer */
	block_t blkaddr;	/* block address locating the last inode */
};

#define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
#define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))

#define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
#define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
#define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
#define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)

static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = nats_in_cursum(rs);
	rs->n_nats = cpu_to_le16(before + i);
	return before;
}

static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
{
	int before = sits_in_cursum(rs);
	rs->n_sits = cpu_to_le16(before + i);
	return before;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * ioctl commands
 */
#define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
#define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS

#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
/*
 * ioctl commands in 32 bit emulation
 */
#define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
#define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
#endif

172 173 174
/*
 * For INODE and NODE manager
 */
175 176 177 178 179 180 181
/*
 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 * as its node offset to distinguish from index node blocks.
 * But some bits are used to mark the node block.
 */
#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
				>> OFFSET_BIT_SHIFT)
182 183 184 185 186
enum {
	ALLOC_NODE,			/* allocate a new node page if needed */
	LOOKUP_NODE,			/* look up a node without readahead */
	LOOKUP_NODE_RA,			/*
					 * look up a node with readahead called
Chao Yu's avatar
Chao Yu committed
187
					 * by get_data_block.
188
					 */
189 190
};

191 192
#define F2FS_LINK_MAX		32000	/* maximum link count per file */

193 194
#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */

195
/* for in-memory extent cache entry */
196 197
#define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */

198 199 200 201
struct extent_info {
	rwlock_t ext_lock;	/* rwlock for consistency */
	unsigned int fofs;	/* start offset in a file */
	u32 blk_addr;		/* start block address of the extent */
Masanari Iida's avatar
Masanari Iida committed
202
	unsigned int len;	/* length of the extent */
203 204 205 206 207 208
};

/*
 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 */
#define FADVISE_COLD_BIT	0x01
209
#define FADVISE_LOST_PINO_BIT	0x02
210

211 212
#define DEF_DIR_LEVEL		0

213 214 215 216
struct f2fs_inode_info {
	struct inode vfs_inode;		/* serve a vfs inode */
	unsigned long i_flags;		/* keep an inode flags for ioctl */
	unsigned char i_advise;		/* use to give file attribute hints */
217
	unsigned char i_dir_level;	/* use for dentry level for large dir */
218
	unsigned int i_current_depth;	/* use only in directory structure */
219
	unsigned int i_pino;		/* parent inode number */
220 221 222 223
	umode_t i_acl_mode;		/* keep file acl mode temporarily */

	/* Use below internally in f2fs*/
	unsigned long flags;		/* use to pass per-file flags */
224
	struct rw_semaphore i_sem;	/* protect fi info */
225 226 227 228
	atomic_t dirty_dents;		/* # of dirty dentry pages */
	f2fs_hash_t chash;		/* hash value of given file name */
	unsigned int clevel;		/* maximum level of given file name */
	nid_t i_xattr_nid;		/* node id that contains xattrs */
229
	unsigned long long xattr_ver;	/* cp version of xattr modification */
230
	struct extent_info ext;		/* in-memory extent cache entry */
231
	struct dir_inode_entry *dirty_dir;	/* the pointer of dirty dir */
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
};

static inline void get_extent_info(struct extent_info *ext,
					struct f2fs_extent i_ext)
{
	write_lock(&ext->ext_lock);
	ext->fofs = le32_to_cpu(i_ext.fofs);
	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
	ext->len = le32_to_cpu(i_ext.len);
	write_unlock(&ext->ext_lock);
}

static inline void set_raw_extent(struct extent_info *ext,
					struct f2fs_extent *i_ext)
{
	read_lock(&ext->ext_lock);
	i_ext->fofs = cpu_to_le32(ext->fofs);
	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
	i_ext->len = cpu_to_le32(ext->len);
	read_unlock(&ext->ext_lock);
}

struct f2fs_nm_info {
	block_t nat_blkaddr;		/* base disk address of NAT */
	nid_t max_nid;			/* maximum possible node ids */
257
	nid_t available_nids;		/* maximum available node ids */
258
	nid_t next_scan_nid;		/* the next nid to be scanned */
259
	unsigned int ram_thresh;	/* control the memory footprint */
260 261 262 263 264 265 266

	/* NAT cache management */
	struct radix_tree_root nat_root;/* root of the nat entry cache */
	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
	unsigned int nat_cnt;		/* the # of cached nat entries */
	struct list_head nat_entries;	/* cached nat entry list (clean) */
	struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
267 268
	struct list_head nat_entry_set;	/* nat entry set list */
	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
269 270

	/* free node ids management */
271
	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head free_nid_list;	/* a list for free nids */
	spinlock_t free_nid_list_lock;	/* protect free nid list */
	unsigned int fcnt;		/* the number of free node id */
	struct mutex build_lock;	/* lock for build free nids */

	/* for checkpoint */
	char *nat_bitmap;		/* NAT bitmap pointer */
	int bitmap_size;		/* bitmap size */
};

/*
 * this structure is used as one of function parameters.
 * all the information are dedicated to a given direct node block determined
 * by the data offset in a file.
 */
struct dnode_of_data {
	struct inode *inode;		/* vfs inode pointer */
	struct page *inode_page;	/* its inode page, NULL is possible */
	struct page *node_page;		/* cached direct node page */
	nid_t nid;			/* node id of the direct node block */
	unsigned int ofs_in_node;	/* data offset in the node page */
	bool inode_page_locked;		/* inode page is locked or not */
	block_t	data_blkaddr;		/* block address of the node block */
};

static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
		struct page *ipage, struct page *npage, nid_t nid)
{
300
	memset(dn, 0, sizeof(*dn));
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	dn->inode = inode;
	dn->inode_page = ipage;
	dn->node_page = npage;
	dn->nid = nid;
}

/*
 * For SIT manager
 *
 * By default, there are 6 active log areas across the whole main area.
 * When considering hot and cold data separation to reduce cleaning overhead,
 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 * respectively.
 * In the current design, you should not change the numbers intentionally.
 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 * logs individually according to the underlying devices. (default: 6)
 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 * data and 8 for node logs.
 */
#define	NR_CURSEG_DATA_TYPE	(3)
#define NR_CURSEG_NODE_TYPE	(3)
#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)

enum {
	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
	CURSEG_WARM_DATA,	/* data blocks */
	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
	CURSEG_COLD_NODE,	/* indirect node blocks */
	NO_CHECK_TYPE
};

334 335 336 337 338 339
struct flush_cmd {
	struct flush_cmd *next;
	struct completion wait;
	int ret;
};

340 341 342 343 344 345 346 347 348
struct flush_cmd_control {
	struct task_struct *f2fs_issue_flush;	/* flush thread */
	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
	struct flush_cmd *issue_list;		/* list for command issue */
	struct flush_cmd *dispatch_list;	/* list for command dispatch */
	spinlock_t issue_lock;			/* for issue list lock */
	struct flush_cmd *issue_tail;		/* list tail of issue list */
};

349 350 351 352 353 354 355 356 357 358 359 360 361 362
struct f2fs_sm_info {
	struct sit_info *sit_info;		/* whole segment information */
	struct free_segmap_info *free_info;	/* free segment information */
	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
	struct curseg_info *curseg_array;	/* active segment information */

	block_t seg0_blkaddr;		/* block address of 0'th segment */
	block_t main_blkaddr;		/* start block address of main area */
	block_t ssa_blkaddr;		/* start block address of SSA area */

	unsigned int segment_count;	/* total # of segments */
	unsigned int main_segments;	/* # of segments in main area */
	unsigned int reserved_segments;	/* # of reserved segments */
	unsigned int ovp_segments;	/* # of overprovision segments */
363 364 365

	/* a threshold to reclaim prefree segments */
	unsigned int rec_prefree_segments;
366 367 368 369 370

	/* for small discard management */
	struct list_head discard_list;		/* 4KB discard list */
	int nr_discards;			/* # of discards in the list */
	int max_discards;			/* max. discards to be issued */
371 372 373

	unsigned int ipu_policy;	/* in-place-update policy */
	unsigned int min_ipu_util;	/* in-place-update threshold */
374 375

	/* for flush command control */
376 377
	struct flush_cmd_control *cmd_control_info;

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
};

/*
 * For superblock
 */
/*
 * COUNT_TYPE for monitoring
 *
 * f2fs monitors the number of several block types such as on-writeback,
 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 */
enum count_type {
	F2FS_WRITEBACK,
	F2FS_DIRTY_DENTS,
	F2FS_DIRTY_NODES,
	F2FS_DIRTY_META,
	NR_COUNT_TYPE,
};

/*
 * The below are the page types of bios used in submti_bio().
 * The available types are:
 * DATA			User data pages. It operates as async mode.
 * NODE			Node pages. It operates as async mode.
 * META			FS metadata pages such as SIT, NAT, CP.
 * NR_PAGE_TYPE		The number of page types.
 * META_FLUSH		Make sure the previous pages are written
 *			with waiting the bio's completion
 * ...			Only can be used with META.
 */
408
#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
409 410 411 412 413 414 415 416
enum page_type {
	DATA,
	NODE,
	META,
	NR_PAGE_TYPE,
	META_FLUSH,
};

Jaegeuk Kim's avatar
Jaegeuk Kim committed
417
struct f2fs_io_info {
418 419
	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
Jaegeuk Kim's avatar
Jaegeuk Kim committed
420 421
};

422
#define is_read_io(rw)	(((rw) & 1) == READ)
423
struct f2fs_bio_info {
Jaegeuk Kim's avatar
Jaegeuk Kim committed
424
	struct f2fs_sb_info *sbi;	/* f2fs superblock */
425 426
	struct bio *bio;		/* bios to merge */
	sector_t last_block_in_bio;	/* last block number */
Jaegeuk Kim's avatar
Jaegeuk Kim committed
427
	struct f2fs_io_info fio;	/* store buffered io info. */
428
	struct rw_semaphore io_rwsem;	/* blocking op for bio */
429 430
};

431 432
struct f2fs_sb_info {
	struct super_block *sb;			/* pointer to VFS super block */
433
	struct proc_dir_entry *s_proc;		/* proc entry */
434 435 436 437 438 439 440 441 442 443
	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
	struct f2fs_super_block *raw_super;	/* raw super block pointer */
	int s_dirty;				/* dirty flag for checkpoint */

	/* for node-related operations */
	struct f2fs_nm_info *nm_info;		/* node manager */
	struct inode *node_inode;		/* cache node blocks */

	/* for segment-related operations */
	struct f2fs_sm_info *sm_info;		/* segment manager */
444 445

	/* for bio operations */
446
	struct f2fs_bio_info read_io;			/* for read bios */
447
	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
448
	struct completion *wait_io;		/* for completion bios */
449 450 451 452

	/* for checkpoint */
	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
	struct inode *meta_inode;		/* cache meta blocks */
453
	struct mutex cp_mutex;			/* checkpoint procedure lock */
454
	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
455
	struct mutex node_write;		/* locking node writes */
456
	struct mutex writepages;		/* mutex for writepages() */
Haicheng Li's avatar
Haicheng Li committed
457
	bool por_doing;				/* recovery is doing or not */
458
	wait_queue_head_t cp_wait;
459

460
	/* for inode management */
461
	struct radix_tree_root ino_root[MAX_INO_ENTRY];	/* ino entry array */
462 463 464 465
	spinlock_t ino_lock[MAX_INO_ENTRY];		/* for ino entry lock */
	struct list_head ino_list[MAX_INO_ENTRY];	/* inode list head */

	/* for orphan inode, use 0'th array */
466
	unsigned int n_orphans;			/* # of orphan inodes */
467
	unsigned int max_orphans;		/* max orphan inodes */
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

	/* for directory inode management */
	struct list_head dir_inode_list;	/* dir inode list */
	spinlock_t dir_inode_lock;		/* for dir inode list lock */

	/* basic file system units */
	unsigned int log_sectors_per_block;	/* log2 sectors per block */
	unsigned int log_blocksize;		/* log2 block size */
	unsigned int blocksize;			/* block size */
	unsigned int root_ino_num;		/* root inode number*/
	unsigned int node_ino_num;		/* node inode number*/
	unsigned int meta_ino_num;		/* meta inode number*/
	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
	unsigned int blocks_per_seg;		/* blocks per segment */
	unsigned int segs_per_sec;		/* segments per section */
	unsigned int secs_per_zone;		/* sections per zone */
	unsigned int total_sections;		/* total section count */
	unsigned int total_node_count;		/* total node block count */
	unsigned int total_valid_node_count;	/* valid node block count */
	unsigned int total_valid_inode_count;	/* valid inode count */
	int active_logs;			/* # of active logs */
489
	int dir_level;				/* directory level */
490 491 492 493 494 495 496 497 498 499 500 501 502

	block_t user_block_count;		/* # of user blocks */
	block_t total_valid_block_count;	/* # of valid blocks */
	block_t alloc_valid_block_count;	/* # of allocated blocks */
	block_t last_valid_block_count;		/* for recovery */
	u32 s_next_generation;			/* for NFS support */
	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */

	struct f2fs_mount_info mount_opt;	/* mount options */

	/* for cleaning operations */
	struct mutex gc_mutex;			/* mutex for GC */
	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
503
	unsigned int cur_victim_sec;		/* current victim section num */
504

505 506 507
	/* maximum # of trials to find a victim segment for SSR and GC */
	unsigned int max_victim_search;

508 509 510 511
	/*
	 * for stat information.
	 * one is for the LFS mode, and the other is for the SSR mode.
	 */
512
#ifdef CONFIG_F2FS_STAT_FS
513 514 515 516
	struct f2fs_stat_info *stat_info;	/* FS status information */
	unsigned int segment_count[2];		/* # of allocated segments */
	unsigned int block_count[2];		/* # of allocated blocks */
	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
517
	int inline_inode;			/* # of inline_data inodes */
518
	int bg_gc;				/* background gc calls */
519 520 521
	unsigned int n_dirty_dirs;		/* # of dir inodes */
#endif
	unsigned int last_victim[2];		/* last victim segment # */
522
	spinlock_t stat_lock;			/* lock for stat operations */
523 524 525 526

	/* For sysfs suppport */
	struct kobject s_kobj;
	struct completion s_kobj_unregister;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
};

/*
 * Inline functions
 */
static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
{
	return container_of(inode, struct f2fs_inode_info, vfs_inode);
}

static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
{
	return sb->s_fs_info;
}

static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_super_block *)(sbi->raw_super);
}

static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_checkpoint *)(sbi->ckpt);
}

552 553 554 555 556
static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
	return (struct f2fs_node *)page_address(page);
}

557 558 559 560 561
static inline struct f2fs_inode *F2FS_INODE(struct page *page)
{
	return &((struct f2fs_node *)page_address(page))->i;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_nm_info *)(sbi->nm_info);
}

static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
{
	return (struct f2fs_sm_info *)(sbi->sm_info);
}

static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
{
	return (struct sit_info *)(SM_I(sbi)->sit_info);
}

static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
{
	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
}

static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
{
	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
}

587 588 589 590 591
static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->meta_inode->i_mapping;
}

592 593 594 595 596
static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
{
	return sbi->node_inode->i_mapping;
}

597 598 599 600 601 602 603 604 605 606
static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 1;
}

static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
{
	sbi->s_dirty = 0;
}

607 608 609 610 611
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
	return le64_to_cpu(cp->checkpoint_ver);
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	return ckpt_flags & f;
}

static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags |= f;
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
	ckpt_flags &= (~f);
	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
}

632
static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
633
{
634
	down_read(&sbi->cp_rwsem);
635 636
}

637
static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
638
{
639
	up_read(&sbi->cp_rwsem);
640 641
}

642
static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
643
{
644
	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
645 646
}

647
static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
648
{
649
	up_write(&sbi->cp_rwsem);
650 651 652 653 654
}

/*
 * Check whether the given nid is within node id range.
 */
655
static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
656
{
657 658
	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
		return -EINVAL;
659
	if (unlikely(nid >= NM_I(sbi)->max_nid))
660 661
		return -EINVAL;
	return 0;
662 663 664 665 666 667 668 669 670 671
}

#define F2FS_DEFAULT_ALLOCATED_BLOCKS	1

/*
 * Check whether the inode has blocks or not
 */
static inline int F2FS_HAS_BLOCKS(struct inode *inode)
{
	if (F2FS_I(inode)->i_xattr_nid)
Chris Fries's avatar
Chris Fries committed
672
		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
673
	else
Chris Fries's avatar
Chris Fries committed
674
		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
675 676
}

677 678 679 680 681
static inline bool f2fs_has_xattr_block(unsigned int ofs)
{
	return ofs == XATTR_NODE_OFFSET;
}

682 683 684 685 686 687 688 689
static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
				 struct inode *inode, blkcnt_t count)
{
	block_t	valid_block_count;

	spin_lock(&sbi->stat_lock);
	valid_block_count =
		sbi->total_valid_block_count + (block_t)count;
690
	if (unlikely(valid_block_count > sbi->user_block_count)) {
691 692 693 694 695 696 697 698 699 700
		spin_unlock(&sbi->stat_lock);
		return false;
	}
	inode->i_blocks += count;
	sbi->total_valid_block_count = valid_block_count;
	sbi->alloc_valid_block_count += (block_t)count;
	spin_unlock(&sbi->stat_lock);
	return true;
}

701
static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
702 703 704 705
						struct inode *inode,
						blkcnt_t count)
{
	spin_lock(&sbi->stat_lock);
706 707
	f2fs_bug_on(sbi->total_valid_block_count < (block_t) count);
	f2fs_bug_on(inode->i_blocks < count);
708 709 710 711 712 713 714 715 716 717 718 719 720
	inode->i_blocks -= count;
	sbi->total_valid_block_count -= (block_t)count;
	spin_unlock(&sbi->stat_lock);
}

static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_inc(&sbi->nr_pages[count_type]);
	F2FS_SET_SB_DIRT(sbi);
}

static inline void inode_inc_dirty_dents(struct inode *inode)
{
721
	inc_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS);
722 723 724 725 726 727 728 729 730 731
	atomic_inc(&F2FS_I(inode)->dirty_dents);
}

static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
{
	atomic_dec(&sbi->nr_pages[count_type]);
}

static inline void inode_dec_dirty_dents(struct inode *inode)
{
732 733 734 735
	if (!S_ISDIR(inode->i_mode))
		return;

	dec_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS);
736 737 738 739 740 741 742 743
	atomic_dec(&F2FS_I(inode)->dirty_dents);
}

static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
{
	return atomic_read(&sbi->nr_pages[count_type]);
}

744 745 746 747 748
static inline int get_dirty_dents(struct inode *inode)
{
	return atomic_read(&F2FS_I(inode)->dirty_dents);
}

749 750 751 752 753 754 755 756
static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
{
	unsigned int pages_per_sec = sbi->segs_per_sec *
					(1 << sbi->log_blocks_per_seg);
	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
}

757 758
static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
{
759
	return sbi->total_valid_block_count;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
}

static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);

	/* return NAT or SIT bitmap */
	if (flag == NAT_BITMAP)
		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
	else if (flag == SIT_BITMAP)
		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);

	return 0;
}

static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
{
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
Changman Lee's avatar
Changman Lee committed
778 779 780 781 782 783 784 785 786
	int offset;

	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
		if (flag == NAT_BITMAP)
			return &ckpt->sit_nat_version_bitmap;
		else
			return ((unsigned char *)ckpt + F2FS_BLKSIZE);
	} else {
		offset = (flag == NAT_BITMAP) ?
787
			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
Changman Lee's avatar
Changman Lee committed
788 789
		return &ckpt->sit_nat_version_bitmap + offset;
	}
790 791 792 793 794 795
}

static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
	block_t start_addr;
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
796
	unsigned long long ckpt_version = cur_cp_version(ckpt);
797

798
	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	/*
	 * odd numbered checkpoint should at cp segment 0
	 * and even segent must be at cp segment 1
	 */
	if (!(ckpt_version & 1))
		start_addr += sbi->blocks_per_seg;

	return start_addr;
}

static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
{
	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
816
						struct inode *inode)
817 818 819 820 821 822
{
	block_t	valid_block_count;
	unsigned int valid_node_count;

	spin_lock(&sbi->stat_lock);

823
	valid_block_count = sbi->total_valid_block_count + 1;
824
	if (unlikely(valid_block_count > sbi->user_block_count)) {
825 826 827 828
		spin_unlock(&sbi->stat_lock);
		return false;
	}

829
	valid_node_count = sbi->total_valid_node_count + 1;
830
	if (unlikely(valid_node_count > sbi->total_node_count)) {
831 832 833 834 835
		spin_unlock(&sbi->stat_lock);
		return false;
	}

	if (inode)
836 837 838 839 840
		inode->i_blocks++;

	sbi->alloc_valid_block_count++;
	sbi->total_valid_node_count++;
	sbi->total_valid_block_count++;
841 842 843 844 845 846
	spin_unlock(&sbi->stat_lock);

	return true;
}

static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
847
						struct inode *inode)
848 849 850
{
	spin_lock(&sbi->stat_lock);

851 852 853
	f2fs_bug_on(!sbi->total_valid_block_count);
	f2fs_bug_on(!sbi->total_valid_node_count);
	f2fs_bug_on(!inode->i_blocks);
854

855 856 857
	inode->i_blocks--;
	sbi->total_valid_node_count--;
	sbi->total_valid_block_count--;
858 859 860 861 862 863

	spin_unlock(&sbi->stat_lock);
}

static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
{
864
	return sbi->total_valid_node_count;
865 866 867 868 869
}

static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
{
	spin_lock(&sbi->stat_lock);
870
	f2fs_bug_on(sbi->total_valid_inode_count == sbi->total_node_count);
871 872 873 874
	sbi->total_valid_inode_count++;
	spin_unlock(&sbi->stat_lock);
}

875
static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
876 877
{
	spin_lock(&sbi->stat_lock);
878
	f2fs_bug_on(!sbi->total_valid_inode_count);
879 880 881 882 883 884
	sbi->total_valid_inode_count--;
	spin_unlock(&sbi->stat_lock);
}

static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
{
885
	return sbi->total_valid_inode_count;
886 887 888 889
}

static inline void f2fs_put_page(struct page *page, int unlock)
{
890
	if (!page)
891 892 893
		return;

	if (unlock) {
894
		f2fs_bug_on(!PageLocked(page));
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		unlock_page(page);
	}
	page_cache_release(page);
}

static inline void f2fs_put_dnode(struct dnode_of_data *dn)
{
	if (dn->node_page)
		f2fs_put_page(dn->node_page, 1);
	if (dn->inode_page && dn->node_page != dn->inode_page)
		f2fs_put_page(dn->inode_page, 0);
	dn->node_page = NULL;
	dn->inode_page = NULL;
}

static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
911
					size_t size)
912
{
913
	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929
static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
						gfp_t flags)
{
	void *entry;
retry:
	entry = kmem_cache_alloc(cachep, flags);
	if (!entry) {
		cond_resched();
		goto retry;
	}

	return entry;
}

930 931 932 933
#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)

static inline bool IS_INODE(struct page *page)
{
934
	struct f2fs_node *p = F2FS_NODE(page);
935 936 937 938 939 940 941 942 943 944 945 946 947
	return RAW_IS_INODE(p);
}

static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
{
	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
}

static inline block_t datablock_addr(struct page *node_page,
		unsigned int offset)
{
	struct f2fs_node *raw_node;
	__le32 *addr_array;
948
	raw_node = F2FS_NODE(node_page);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	addr_array = blkaddr_in_node(raw_node);
	return le32_to_cpu(addr_array[offset]);
}

static inline int f2fs_test_bit(unsigned int nr, char *addr)
{
	int mask;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	return mask & *addr;
}

static inline int f2fs_set_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr |= mask;
	return ret;
}

static inline int f2fs_clear_bit(unsigned int nr, char *addr)
{
	int mask;
	int ret;

	addr += (nr >> 3);
	mask = 1 << (7 - (nr & 0x07));
	ret = mask & *addr;
	*addr &= ~mask;
	return ret;
}

/* used for f2fs_inode_info->flags */
enum {
	FI_NEW_INODE,		/* indicate newly allocated inode */
989
	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
990
	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
991 992 993
	FI_INC_LINK,		/* need to increment i_nlink */
	FI_ACL_MODE,		/* indicate acl mode */
	FI_NO_ALLOC,		/* should not allocate any blocks */
994
	FI_UPDATE_DIR,		/* should update inode block for consistency */
995
	FI_DELAY_IPUT,		/* used for the recovery */
996
	FI_NO_EXTENT,		/* not to use the extent cache */
997
	FI_INLINE_XATTR,	/* used for inline xattr */
998
	FI_INLINE_DATA,		/* used for inline data*/
999 1000
	FI_APPEND_WRITE,	/* inode has appended data */
	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1001
	FI_NEED_IPU,		/* used fo ipu for fdatasync */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
};

static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	set_bit(flag, &fi->flags);
}

static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
{
	return test_bit(flag, &fi->flags);
}

static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	clear_bit(flag, &fi->flags);
}

static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
{
	fi->i_acl_mode = mode;
	set_inode_flag(fi, FI_ACL_MODE);
}

static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
{
	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
		clear_inode_flag(fi, FI_ACL_MODE);
		return 1;
	}
	return 0;
}

1034 1035 1036 1037 1038
static inline void get_inline_info(struct f2fs_inode_info *fi,
					struct f2fs_inode *ri)
{
	if (ri->i_inline & F2FS_INLINE_XATTR)
		set_inode_flag(fi, FI_INLINE_XATTR);
1039 1040
	if (ri->i_inline & F2FS_INLINE_DATA)
		set_inode_flag(fi, FI_INLINE_DATA);
1041 1042 1043 1044 1045 1046 1047 1048 1049
}

static inline void set_raw_inline(struct f2fs_inode_info *fi,
					struct f2fs_inode *ri)
{
	ri->i_inline = 0;

	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
		ri->i_inline |= F2FS_INLINE_XATTR;
1050 1051
	if (is_inode_flag_set(fi, FI_INLINE_DATA))
		ri->i_inline |= F2FS_INLINE_DATA;
1052 1053
}

1054 1055 1056 1057 1058
static inline int f2fs_has_inline_xattr(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
}

1059 1060
static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
{
1061
	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1062 1063 1064 1065
		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
	return DEF_ADDRS_PER_INODE;
}

Jaegeuk Kim's avatar
Jaegeuk Kim committed
1066 1067
static inline void *inline_xattr_addr(struct page *page)
{
1068
	struct f2fs_inode *ri = F2FS_INODE(page);
Jaegeuk Kim's avatar
Jaegeuk Kim committed
1069 1070 1071 1072 1073 1074
	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
					F2FS_INLINE_XATTR_ADDRS]);
}

static inline int inline_xattr_size(struct inode *inode)
{
1075
	if (f2fs_has_inline_xattr(inode))
Jaegeuk Kim's avatar
Jaegeuk Kim committed
1076 1077 1078 1079 1080
		return F2FS_INLINE_XATTR_ADDRS << 2;
	else
		return 0;
}

1081 1082 1083 1084 1085
static inline int f2fs_has_inline_data(struct inode *inode)
{
	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
}

1086 1087
static inline void *inline_data_addr(struct page *page)
{
1088
	struct f2fs_inode *ri = F2FS_INODE(page);
1089 1090 1091
	return (void *)&(ri->i_addr[1]);
}

Jaegeuk Kim's avatar
Jaegeuk Kim committed
1092 1093 1094 1095 1096
static inline int f2fs_readonly(struct super_block *sb)
{
	return sb->s_flags & MS_RDONLY;
}

1097 1098 1099 1100 1101 1102
static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
{
	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
	sbi->sb->s_flags |= MS_RDONLY;
}

1103 1104 1105 1106
#define get_inode_mode(i) \
	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))

1107 1108 1109 1110 1111 1112
/* get offset of first page in next direct node */
#define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))

1113 1114 1115 1116 1117
/*
 * file.c
 */
int f2fs_sync_file(struct file *, loff_t, loff_t, int);
void truncate_data_blocks(struct dnode_of_data *);
1118
int truncate_blocks(struct inode *, u64);
1119
void f2fs_truncate(struct inode *);
1120
int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1121 1122
int f2fs_setattr(struct dentry *, struct iattr *);
int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1123
int truncate_data_blocks_range(struct dnode_of_data *, int);
1124
long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1125
long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1126 1127 1128 1129 1130 1131

/*
 * inode.c
 */
void f2fs_set_inode_flags(struct inode *);
struct inode *f2fs_iget(struct super_block *, unsigned long);
1132
int try_to_free_nats(struct f2fs_sb_info *, int);
1133
void update_inode(struct inode *, struct page *);
1134
void update_inode_page(struct inode *);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
int f2fs_write_inode(struct inode *, struct writeback_control *);
void f2fs_evict_inode(struct inode *);

/*
 * namei.c
 */
struct dentry *f2fs_get_parent(struct dentry *child);

/*
 * dir.c
 */
struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
							struct page **);
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
				struct page *, struct inode *);
1152
int update_dent_inode(struct inode *, const struct qstr *);
1153
int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1154
void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1155
int f2fs_do_tmpfile(struct inode *, struct inode *);
1156 1157 1158
int f2fs_make_empty(struct inode *, struct inode *);
bool f2fs_empty_dir(struct inode *);

1159 1160 1161 1162 1163 1164
static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
{
	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
				inode);
}

1165 1166 1167 1168
/*
 * super.c
 */
int f2fs_sync_fs(struct super_block *, int);
1169 1170
extern __printf(3, 4)
void f2fs_msg(struct super_block *, const char *, const char *, ...);
1171 1172 1173 1174

/*
 * hash.c
 */
1175
f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1176 1177 1178 1179 1180 1181 1182

/*
 * node.c
 */
struct dnode_of_data;
struct node_info;

1183
bool available_free_memory(struct f2fs_sb_info *, int);
1184
int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1185
bool fsync_mark_done(struct f2fs_sb_info *, nid_t);
1186
void fsync_mark_clear(struct f2fs_sb_info *, nid_t);
1187 1188 1189
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
int truncate_inode_blocks(struct inode *, pgoff_t);
1190
int truncate_xattr_node(struct inode *, struct page *);
1191
int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1192
void remove_inode_page(struct inode *);
1193
struct page *new_inode_page(struct inode *);