power_allocator.c 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * A power allocator to manage temperature
 *
 * Copyright (C) 2014 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt) "Power allocator: " fmt

#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/thermal.h>

22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/thermal_power_allocator.h>

25 26
#include "thermal_core.h"

27 28
#define INVALID_TRIP -1

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#define FRAC_BITS 10
#define int_to_frac(x) ((x) << FRAC_BITS)
#define frac_to_int(x) ((x) >> FRAC_BITS)

/**
 * mul_frac() - multiply two fixed-point numbers
 * @x:	first multiplicand
 * @y:	second multiplicand
 *
 * Return: the result of multiplying two fixed-point numbers.  The
 * result is also a fixed-point number.
 */
static inline s64 mul_frac(s64 x, s64 y)
{
	return (x * y) >> FRAC_BITS;
}

/**
 * div_frac() - divide two fixed-point numbers
 * @x:	the dividend
 * @y:	the divisor
 *
 * Return: the result of dividing two fixed-point numbers.  The
 * result is also a fixed-point number.
 */
static inline s64 div_frac(s64 x, s64 y)
{
	return div_s64(x << FRAC_BITS, y);
}

/**
 * struct power_allocator_params - parameters for the power allocator governor
61 62
 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 *			it needs to be freed on unbind
63 64 65 66 67
 * @err_integral:	accumulated error in the PID controller.
 * @prev_err:	error in the previous iteration of the PID controller.
 *		Used to calculate the derivative term.
 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 *			governor switches on when this trip point is crossed.
68 69
 *			If the thermal zone only has one passive trip point,
 *			@trip_switch_on should be INVALID_TRIP.
70 71 72 73 74
 * @trip_max_desired_temperature:	last passive trip point of the thermal
 *					zone.  The temperature we are
 *					controlling for.
 */
struct power_allocator_params {
75
	bool allocated_tzp;
76 77 78 79 80 81
	s64 err_integral;
	s32 prev_err;
	int trip_switch_on;
	int trip_max_desired_temperature;
};

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 * @tz: thermal zone we are operating in
 *
 * For thermal zones that don't provide a sustainable_power in their
 * thermal_zone_params, estimate one.  Calculate it using the minimum
 * power of all the cooling devices as that gives a valid value that
 * can give some degree of functionality.  For optimal performance of
 * this governor, provide a sustainable_power in the thermal zone's
 * thermal_zone_params.
 */
static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
{
	u32 sustainable_power = 0;
	struct thermal_instance *instance;
	struct power_allocator_params *params = tz->governor_data;

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		struct thermal_cooling_device *cdev = instance->cdev;
		u32 min_power;

		if (instance->trip != params->trip_max_desired_temperature)
			continue;

		if (power_actor_get_min_power(cdev, tz, &min_power))
			continue;

		sustainable_power += min_power;
	}

	return sustainable_power;
}

/**
 * estimate_pid_constants() - Estimate the constants for the PID controller
 * @tz:		thermal zone for which to estimate the constants
 * @sustainable_power:	sustainable power for the thermal zone
 * @trip_switch_on:	trip point number for the switch on temperature
 * @control_temp:	target temperature for the power allocator governor
 * @force:	whether to force the update of the constants
 *
 * This function is used to update the estimation of the PID
 * controller constants in struct thermal_zone_parameters.
 * Sustainable power is provided in case it was estimated.  The
 * estimated sustainable_power should not be stored in the
 * thermal_zone_parameters so it has to be passed explicitly to this
 * function.
 *
 * If @force is not set, the values in the thermal zone's parameters
 * are preserved if they are not zero.  If @force is set, the values
 * in thermal zone's parameters are overwritten.
 */
static void estimate_pid_constants(struct thermal_zone_device *tz,
				   u32 sustainable_power, int trip_switch_on,
				   int control_temp, bool force)
{
	int ret;
	int switch_on_temp;
	u32 temperature_threshold;

	ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
	if (ret)
		switch_on_temp = 0;

	temperature_threshold = control_temp - switch_on_temp;
147 148 149 150 151 152 153 154 155 156
	/*
	 * estimate_pid_constants() tries to find appropriate default
	 * values for thermal zones that don't provide them. If a
	 * system integrator has configured a thermal zone with two
	 * passive trip points at the same temperature, that person
	 * hasn't put any effort to set up the thermal zone properly
	 * so just give up.
	 */
	if (!temperature_threshold)
		return;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

	if (!tz->tzp->k_po || force)
		tz->tzp->k_po = int_to_frac(sustainable_power) /
			temperature_threshold;

	if (!tz->tzp->k_pu || force)
		tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
			temperature_threshold;

	if (!tz->tzp->k_i || force)
		tz->tzp->k_i = int_to_frac(10) / 1000;
	/*
	 * The default for k_d and integral_cutoff is 0, so we can
	 * leave them as they are.
	 */
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/**
 * pid_controller() - PID controller
 * @tz:	thermal zone we are operating in
 * @control_temp:	the target temperature in millicelsius
 * @max_allocatable_power:	maximum allocatable power for this thermal zone
 *
 * This PID controller increases the available power budget so that the
 * temperature of the thermal zone gets as close as possible to
 * @control_temp and limits the power if it exceeds it.  k_po is the
 * proportional term when we are overshooting, k_pu is the
 * proportional term when we are undershooting.  integral_cutoff is a
 * threshold below which we stop accumulating the error.  The
 * accumulated error is only valid if the requested power will make
 * the system warmer.  If the system is mostly idle, there's no point
 * in accumulating positive error.
 *
 * Return: The power budget for the next period.
 */
static u32 pid_controller(struct thermal_zone_device *tz,
193
			  int control_temp,
194 195 196 197
			  u32 max_allocatable_power)
{
	s64 p, i, d, power_range;
	s32 err, max_power_frac;
198
	u32 sustainable_power;
199 200 201 202
	struct power_allocator_params *params = tz->governor_data;

	max_power_frac = int_to_frac(max_allocatable_power);

203 204 205 206 207 208 209 210 211
	if (tz->tzp->sustainable_power) {
		sustainable_power = tz->tzp->sustainable_power;
	} else {
		sustainable_power = estimate_sustainable_power(tz);
		estimate_pid_constants(tz, sustainable_power,
				       params->trip_switch_on, control_temp,
				       true);
	}

212
	err = control_temp - tz->temperature;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	err = int_to_frac(err);

	/* Calculate the proportional term */
	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);

	/*
	 * Calculate the integral term
	 *
	 * if the error is less than cut off allow integration (but
	 * the integral is limited to max power)
	 */
	i = mul_frac(tz->tzp->k_i, params->err_integral);

	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
		s64 i_next = i + mul_frac(tz->tzp->k_i, err);

Andrew Morton's avatar
Andrew Morton committed
229
		if (abs(i_next) < max_power_frac) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
			i = i_next;
			params->err_integral += err;
		}
	}

	/*
	 * Calculate the derivative term
	 *
	 * We do err - prev_err, so with a positive k_d, a decreasing
	 * error (i.e. driving closer to the line) results in less
	 * power being applied, slowing down the controller)
	 */
	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
	d = div_frac(d, tz->passive_delay);
	params->prev_err = err;

	power_range = p + i + d;

	/* feed-forward the known sustainable dissipatable power */
249
	power_range = sustainable_power + frac_to_int(power_range);
250

251 252 253 254 255 256 257 258
	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);

	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
					  frac_to_int(params->err_integral),
					  frac_to_int(p), frac_to_int(i),
					  frac_to_int(d), power_range);

	return power_range;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
}

/**
 * divvy_up_power() - divvy the allocated power between the actors
 * @req_power:	each actor's requested power
 * @max_power:	each actor's maximum available power
 * @num_actors:	size of the @req_power, @max_power and @granted_power's array
 * @total_req_power: sum of @req_power
 * @power_range:	total allocated power
 * @granted_power:	output array: each actor's granted power
 * @extra_actor_power:	an appropriately sized array to be used in the
 *			function as temporary storage of the extra power given
 *			to the actors
 *
 * This function divides the total allocated power (@power_range)
 * fairly between the actors.  It first tries to give each actor a
 * share of the @power_range according to how much power it requested
 * compared to the rest of the actors.  For example, if only one actor
 * requests power, then it receives all the @power_range.  If
 * three actors each requests 1mW, each receives a third of the
 * @power_range.
 *
 * If any actor received more than their maximum power, then that
 * surplus is re-divvied among the actors based on how far they are
 * from their respective maximums.
 *
 * Granted power for each actor is written to @granted_power, which
 * should've been allocated by the calling function.
 */
static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
			   u32 total_req_power, u32 power_range,
			   u32 *granted_power, u32 *extra_actor_power)
{
	u32 extra_power, capped_extra_power;
	int i;

	/*
	 * Prevent division by 0 if none of the actors request power.
	 */
	if (!total_req_power)
		total_req_power = 1;

	capped_extra_power = 0;
	extra_power = 0;
	for (i = 0; i < num_actors; i++) {
304
		u64 req_range = (u64)req_power[i] * power_range;
305

306 307
		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
							 total_req_power);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

		if (granted_power[i] > max_power[i]) {
			extra_power += granted_power[i] - max_power[i];
			granted_power[i] = max_power[i];
		}

		extra_actor_power[i] = max_power[i] - granted_power[i];
		capped_extra_power += extra_actor_power[i];
	}

	if (!extra_power)
		return;

	/*
	 * Re-divvy the reclaimed extra among actors based on
	 * how far they are from the max
	 */
	extra_power = min(extra_power, capped_extra_power);
	if (capped_extra_power > 0)
		for (i = 0; i < num_actors; i++)
			granted_power[i] += (extra_actor_power[i] *
					extra_power) / capped_extra_power;
}

static int allocate_power(struct thermal_zone_device *tz,
333
			  int control_temp)
334 335 336 337
{
	struct thermal_instance *instance;
	struct power_allocator_params *params = tz->governor_data;
	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
338 339
	u32 *weighted_req_power;
	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
340
	u32 total_granted_power, power_range;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	int i, num_actors, total_weight, ret = 0;
	int trip_max_desired_temperature = params->trip_max_desired_temperature;

	mutex_lock(&tz->lock);

	num_actors = 0;
	total_weight = 0;
	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if ((instance->trip == trip_max_desired_temperature) &&
		    cdev_is_power_actor(instance->cdev)) {
			num_actors++;
			total_weight += instance->weight;
		}
	}

356 357 358 359 360
	if (!num_actors) {
		ret = -ENODEV;
		goto unlock;
	}

361
	/*
362 363 364 365 366
	 * We need to allocate five arrays of the same size:
	 * req_power, max_power, granted_power, extra_actor_power and
	 * weighted_req_power.  They are going to be needed until this
	 * function returns.  Allocate them all in one go to simplify
	 * the allocation and deallocation logic.
367 368 369 370
	 */
	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
371
	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
372
	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
373 374 375 376 377 378 379 380
	if (!req_power) {
		ret = -ENOMEM;
		goto unlock;
	}

	max_power = &req_power[num_actors];
	granted_power = &req_power[2 * num_actors];
	extra_actor_power = &req_power[3 * num_actors];
381
	weighted_req_power = &req_power[4 * num_actors];
382 383

	i = 0;
384
	total_weighted_req_power = 0;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	total_req_power = 0;
	max_allocatable_power = 0;

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		int weight;
		struct thermal_cooling_device *cdev = instance->cdev;

		if (instance->trip != trip_max_desired_temperature)
			continue;

		if (!cdev_is_power_actor(cdev))
			continue;

		if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
			continue;

		if (!total_weight)
			weight = 1 << FRAC_BITS;
		else
			weight = instance->weight;

406
		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
407 408 409 410 411 412

		if (power_actor_get_max_power(cdev, tz, &max_power[i]))
			continue;

		total_req_power += req_power[i];
		max_allocatable_power += max_power[i];
413
		total_weighted_req_power += weighted_req_power[i];
414 415 416 417

		i++;
	}

418
	power_range = pid_controller(tz, control_temp, max_allocatable_power);
419

420 421 422
	divvy_up_power(weighted_req_power, max_power, num_actors,
		       total_weighted_req_power, power_range, granted_power,
		       extra_actor_power);
423

424
	total_granted_power = 0;
425 426 427 428 429 430 431 432 433 434
	i = 0;
	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if (instance->trip != trip_max_desired_temperature)
			continue;

		if (!cdev_is_power_actor(instance->cdev))
			continue;

		power_actor_set_power(instance->cdev, instance,
				      granted_power[i]);
435
		total_granted_power += granted_power[i];
436 437 438 439

		i++;
	}

440 441 442
	trace_thermal_power_allocator(tz, req_power, total_req_power,
				      granted_power, total_granted_power,
				      num_actors, power_range,
443 444
				      max_allocatable_power, tz->temperature,
				      control_temp - tz->temperature);
445

446
	kfree(req_power);
447 448 449 450 451 452
unlock:
	mutex_unlock(&tz->lock);

	return ret;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/**
 * get_governor_trips() - get the number of the two trip points that are key for this governor
 * @tz:	thermal zone to operate on
 * @params:	pointer to private data for this governor
 *
 * The power allocator governor works optimally with two trips points:
 * a "switch on" trip point and a "maximum desired temperature".  These
 * are defined as the first and last passive trip points.
 *
 * If there is only one trip point, then that's considered to be the
 * "maximum desired temperature" trip point and the governor is always
 * on.  If there are no passive or active trip points, then the
 * governor won't do anything.  In fact, its throttle function
 * won't be called at all.
 */
static void get_governor_trips(struct thermal_zone_device *tz,
			       struct power_allocator_params *params)
470
{
471
	int i, last_active, last_passive;
472 473 474
	bool found_first_passive;

	found_first_passive = false;
475 476
	last_active = INVALID_TRIP;
	last_passive = INVALID_TRIP;
477 478 479

	for (i = 0; i < tz->trips; i++) {
		enum thermal_trip_type type;
480
		int ret;
481 482

		ret = tz->ops->get_trip_type(tz, i, &type);
483 484 485 486 487 488
		if (ret) {
			dev_warn(&tz->device,
				 "Failed to get trip point %d type: %d\n", i,
				 ret);
			continue;
		}
489

490 491
		if (type == THERMAL_TRIP_PASSIVE) {
			if (!found_first_passive) {
492 493
				params->trip_switch_on = i;
				found_first_passive = true;
494 495
			} else  {
				last_passive = i;
496
			}
497 498
		} else if (type == THERMAL_TRIP_ACTIVE) {
			last_active = i;
499 500 501 502 503
		} else {
			break;
		}
	}

504
	if (last_passive != INVALID_TRIP) {
505
		params->trip_max_desired_temperature = last_passive;
506 507 508
	} else if (found_first_passive) {
		params->trip_max_desired_temperature = params->trip_switch_on;
		params->trip_switch_on = INVALID_TRIP;
509
	} else {
510 511
		params->trip_switch_on = INVALID_TRIP;
		params->trip_max_desired_temperature = last_active;
512 513 514 515 516 517 518 519 520 521 522 523 524 525
	}
}

static void reset_pid_controller(struct power_allocator_params *params)
{
	params->err_integral = 0;
	params->prev_err = 0;
}

static void allow_maximum_power(struct thermal_zone_device *tz)
{
	struct thermal_instance *instance;
	struct power_allocator_params *params = tz->governor_data;

526
	mutex_lock(&tz->lock);
527 528 529 530 531 532
	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if ((instance->trip != params->trip_max_desired_temperature) ||
		    (!cdev_is_power_actor(instance->cdev)))
			continue;

		instance->target = 0;
533
		mutex_lock(&instance->cdev->lock);
534
		instance->cdev->updated = false;
535
		mutex_unlock(&instance->cdev->lock);
536 537
		thermal_cdev_update(instance->cdev);
	}
538
	mutex_unlock(&tz->lock);
539 540 541 542 543 544
}

/**
 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
 * @tz:	thermal zone to bind it to
 *
545 546
 * Initialize the PID controller parameters and bind it to the thermal
 * zone.
547
 *
548
 * Return: 0 on success, or -ENOMEM if we ran out of memory.
549 550 551 552 553
 */
static int power_allocator_bind(struct thermal_zone_device *tz)
{
	int ret;
	struct power_allocator_params *params;
554
	int control_temp;
555

556
	params = kzalloc(sizeof(*params), GFP_KERNEL);
557 558 559
	if (!params)
		return -ENOMEM;

560 561 562 563 564 565 566 567 568 569
	if (!tz->tzp) {
		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
		if (!tz->tzp) {
			ret = -ENOMEM;
			goto free_params;
		}

		params->allocated_tzp = true;
	}

570 571 572
	if (!tz->tzp->sustainable_power)
		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");

573
	get_governor_trips(tz, params);
574

575 576 577 578 579 580 581 582 583
	if (tz->trips > 0) {
		ret = tz->ops->get_trip_temp(tz,
					params->trip_max_desired_temperature,
					&control_temp);
		if (!ret)
			estimate_pid_constants(tz, tz->tzp->sustainable_power,
					       params->trip_switch_on,
					       control_temp, false);
	}
584 585 586 587 588 589

	reset_pid_controller(params);

	tz->governor_data = params;

	return 0;
590 591 592 593 594

free_params:
	kfree(params);

	return ret;
595 596 597 598
}

static void power_allocator_unbind(struct thermal_zone_device *tz)
{
599 600
	struct power_allocator_params *params = tz->governor_data;

601
	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
602 603 604 605 606 607

	if (params->allocated_tzp) {
		kfree(tz->tzp);
		tz->tzp = NULL;
	}

608
	kfree(tz->governor_data);
609 610 611 612 613 614
	tz->governor_data = NULL;
}

static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
{
	int ret;
615
	int switch_on_temp, control_temp;
616 617 618 619 620 621 622 623 624 625 626
	struct power_allocator_params *params = tz->governor_data;

	/*
	 * We get called for every trip point but we only need to do
	 * our calculations once
	 */
	if (trip != params->trip_max_desired_temperature)
		return 0;

	ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
				     &switch_on_temp);
627
	if (!ret && (tz->temperature < switch_on_temp)) {
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		tz->passive = 0;
		reset_pid_controller(params);
		allow_maximum_power(tz);
		return 0;
	}

	tz->passive = 1;

	ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
				&control_temp);
	if (ret) {
		dev_warn(&tz->device,
			 "Failed to get the maximum desired temperature: %d\n",
			 ret);
		return ret;
	}

645
	return allocate_power(tz, control_temp);
646 647 648 649 650 651 652 653
}

static struct thermal_governor thermal_gov_power_allocator = {
	.name		= "power_allocator",
	.bind_to_tz	= power_allocator_bind,
	.unbind_from_tz	= power_allocator_unbind,
	.throttle	= power_allocator_throttle,
};
654
THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);