fs-writeback.c 70.4 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
Linus Torvalds's avatar
Linus Torvalds committed
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
Linus Torvalds's avatar
Linus Torvalds committed
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
Linus Torvalds's avatar
Linus Torvalds committed
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
Linus Torvalds's avatar
Linus Torvalds committed
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
32

33 34 35
/*
 * 4MB minimal write chunk size
 */
36
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128
 * @inode: inode to be moved
 * @wb: target bdi_writeback
129
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
174 175
}

176 177 178 179 180 181 182 183 184 185 186
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

187 188
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
189
{
190
	trace_writeback_queue(wb, work);
191

192 193
	if (work->done)
		atomic_inc(&work->done->cnt);
194 195 196 197 198 199 200 201 202

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

203
	spin_unlock_bh(&wb->work_lock);
Linus Torvalds's avatar
Linus Torvalds committed
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

224 225
#ifdef CONFIG_CGROUP_WRITEBACK

226 227 228 229 230 231 232 233 234 235 236 237 238 239
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

240 241 242
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

299
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 301 302 303
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
304 305

		spin_unlock(&wb->list_lock);
306
		wb_put(wb);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

326 327 328 329 330 331 332 333 334 335 336 337 338
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
339 340
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
341
	struct bdi_writeback *new_wb = isw->new_wb;
342 343
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
344
	bool switched = false;
345 346 347 348 349

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
Matthew Wilcox's avatar
Matthew Wilcox committed
350
	 * synchronizing against the i_pages lock.
351
	 *
Matthew Wilcox's avatar
Matthew Wilcox committed
352
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
353 354
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
355
	 */
356 357 358 359 360 361 362
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
363
	spin_lock(&inode->i_lock);
Matthew Wilcox's avatar
Matthew Wilcox committed
364
	xa_lock_irq(&mapping->i_pages);
365 366 367

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
368
	 * the inode and we shouldn't modify ->i_io_list.
369 370 371 372 373 374 375
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
Matthew Wilcox's avatar
Matthew Wilcox committed
376
	 * pages actually under writeback.
377
	 */
378 379
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
380 381
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
382 383 384
		}
	}

385 386 387 388 389
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
390 391 392 393 394 395 396 397 398 399
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
400
	if (!list_empty(&inode->i_io_list)) {
401 402
		struct inode *pos;

403
		inode_io_list_del_locked(inode, old_wb);
404
		inode->i_wb = new_wb;
405
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
406 407 408
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
409
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
410 411 412
	} else {
		inode->i_wb = new_wb;
	}
413

414
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
415 416 417
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
418 419
	switched = true;
skip_switch:
420 421 422 423 424 425
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

Matthew Wilcox's avatar
Matthew Wilcox committed
426
	xa_unlock_irq(&mapping->i_pages);
427
	spin_unlock(&inode->i_lock);
428 429
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
430

431 432 433 434
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
435
	wb_put(new_wb);
436 437

	iput(inode);
438
	kfree(isw);
439 440

	atomic_dec(&isw_nr_in_flight);
441 442 443 444 445 446 447 448 449
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
450
	queue_work(isw_wq, &isw->work);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
486
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
487 488 489 490 491
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
492
	inode->i_state |= I_WB_SWITCH;
493
	__iget(inode);
494 495 496 497
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

498 499
	atomic_inc(&isw_nr_in_flight);

500 501
	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
Matthew Wilcox's avatar
Matthew Wilcox committed
502 503
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
504 505 506 507 508 509 510 511 512 513 514
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
528 529 530 531 532
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

533
	wbc->wb = inode_to_wb(inode);
534 535 536 537 538 539 540 541 542
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

543 544
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
545 546 547 548 549 550 551

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
552 553 554
}

/**
555 556
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
557 558 559
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
590 591 592
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
593 594
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
595 596
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
597 598
	int max_id;

599 600 601 602 603 604
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
657 658
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
659 660 661 662 663 664 665 666 667 668
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

669 670 671 672
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
715
EXPORT_SYMBOL_GPL(wbc_account_io);
716

717 718
/**
 * inode_congested - test whether an inode is congested
719
 * @inode: inode to test for congestion (may be NULL)
720 721 722 723 724 725 726 727 728
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
729 730 731
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
732 733 734
 */
int inode_congested(struct inode *inode, int cong_bits)
{
735 736 737 738
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
739
	if (inode && inode_to_wb_is_valid(inode)) {
740
		struct bdi_writeback *wb;
741 742
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
743

744
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
745
		congested = wb_congested(wb, cong_bits);
746
		unlocked_inode_to_wb_end(inode, &lock_cookie);
747
		return congested;
748 749 750 751 752 753
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
797
	struct bdi_writeback *last_wb = NULL;
798 799
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
800 801 802 803

	might_sleep();
restart:
	rcu_read_lock();
804
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
805 806 807 808 809
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

810 811 812 813 814
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

815 816 817 818 819 820
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
821 822
			continue;

823 824 825 826 827 828 829 830 831
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
832
		}
833 834 835 836 837 838 839 840 841 842

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

843 844 845 846 847 848 849 850
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

851 852 853
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
854 855
	}
	rcu_read_unlock();
856 857 858

	if (last_wb)
		wb_put(last_wb);
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
		synchronize_rcu();
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

888 889
#else	/* CONFIG_CGROUP_WRITEBACK */

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

911 912 913 914 915
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

916 917 918 919 920 921
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

922
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
923 924 925 926 927
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

928 929
#endif	/* CONFIG_CGROUP_WRITEBACK */

930 931 932 933 934 935 936 937 938 939 940 941
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
942
{
943 944 945
	if (!wb_has_dirty_io(wb))
		return;

946 947 948 949 950 951
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
952
	 * inflight at the time.
953
	 */
954 955
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
956 957
		return;

958 959
	wb->start_all_reason = reason;
	wb_wakeup(wb);
960
}
961

962
/**
963 964
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
965 966
 *
 * Description:
967
 *   This makes sure WB_SYNC_NONE background writeback happens. When
968
 *   this function returns, it is only guaranteed that for given wb
969 970
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
971
 */
972
void wb_start_background_writeback(struct bdi_writeback *wb)
973
{
974 975 976 977
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
978
	trace_writeback_wake_background(wb);
979
	wb_wakeup(wb);
Linus Torvalds's avatar
Linus Torvalds committed
980 981
}

982 983 984
/*
 * Remove the inode from the writeback list it is on.
 */
985
void inode_io_list_del(struct inode *inode)
986
{
987
	struct bdi_writeback *wb;
988

989
	wb = inode_to_wb_and_lock_list(inode);
990
	inode_io_list_del_locked(inode, wb);
991
	spin_unlock(&wb->list_lock);
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1004
		if (list_empty(&inode->i_wb_list)) {
1005
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1006 1007
			trace_sb_mark_inode_writeback(inode);
		}
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1022 1023 1024 1025
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1026 1027 1028 1029
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1030 1031 1032 1033 1034
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1035
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1036 1037 1038
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1039
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1040
{
1041
	if (!list_empty(&wb->b_dirty)) {
1042
		struct inode *tail;
1043

1044
		tail = wb_inode(wb->b_dirty.next);
1045
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1046 1047
			inode->dirtied_when = jiffies;
	}
1048
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1049 1050
}

1051
/*
1052
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1053
 */
1054
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1055
{
1056
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1057 1058
}

Joern Engel's avatar
Joern Engel committed
1059 1060
static void inode_sync_complete(struct inode *inode)
{
1061
	inode->i_state &= ~I_SYNC;
1062 1063
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1064
	/* Waiters must see I_SYNC cleared before being woken up */
Joern Engel's avatar
Joern Engel committed
1065 1066 1067 1068
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1069 1070 1071 1072 1073 1074 1075 1076
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1077
	 * from permanently stopping the whole bdi writeback.
1078 1079 1080 1081 1082 1083
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1084 1085
#define EXPIRE_DIRTY_ATIME 0x0001

1086
/*
1087
 * Move expired (dirtied before work->older_than_this) dirty inodes from
1088
 * @delaying_queue to @dispatch_queue.
1089
 */
1090
static int move_expired_inodes(struct list_head *delaying_queue,
1091
			       struct list_head *dispatch_queue,
1092
			       int flags,
1093
			       struct wb_writeback_work *work)
1094
{
1095 1096
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1097 1098
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1099
	struct super_block *sb = NULL;
1100
	struct inode *inode;
1101
	int do_sb_sort = 0;
1102
	int moved = 0;
1103

1104 1105
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1106 1107
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1108 1109
		older_than_this = &expire_time;
	}
1110
	while (!list_empty(delaying_queue)) {
1111
		inode = wb_inode(delaying_queue->prev);
1112 1113
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1114
			break;
1115
		list_move(&inode->i_io_list, &tmp);
1116
		moved++;
1117 1118
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1119 1120
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1121 1122 1123
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1124 1125
	}

1126 1127 1128
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1129
		goto out;
1130 1131
	}

1132 1133
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
1134
		sb = wb_inode(tmp.prev)->i_sb;
1135
		list_for_each_prev_safe(pos, node, &tmp) {
1136
			inode = wb_inode(pos);
1137
			if (inode->i_sb == sb)
1138
				list_move(&inode->i_io_list, dispatch_queue);
1139
		}
1140
	}
1141 1142
out:
	return moved;
1143 1144 1145 1146
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1147 1148 1149 1150 1151 1152 1153 1154
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1155
 */
1156
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1157
{
1158
	int moved;
1159

1160
	assert_spin_locked(&wb->list_lock);
1161
	list_splice_init(&wb->b_more_io, &wb->b_io);
1162 1163 1164
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1165 1166
	if (moved)
		wb_io_lists_populated(wb);
1167
	trace_writeback_queue_io(wb, work, moved);
1168 1169
}

1170
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1171
{
1172 1173 1174 1175 1176 1177 1178 1179
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1180
	return 0;
1181 1182
}

Linus Torvalds's avatar
Linus Torvalds committed
1183
/*
1184 1185
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1186
 */
1187 1188 1189
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1190 1191 1192 1193 1194
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1195 1196
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1197 1198
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1199
		spin_lock(&inode->i_lock);
1200
	}
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1256 1257 1258 1259 1260 1261 1262 1263 1264
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1290
	} else if (inode->i_state & I_DIRTY_TIME) {
1291
		inode->dirtied_when = jiffies;
1292
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1293 1294
	} else {
		/* The inode is clean. Remove from writeback lists. */
1295
		inode_io_list_del_locked(inode, wb);
1296 1297 1298
	}
}

1299
/*
1300 1301 1302
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
Linus Torvalds's avatar
Linus Torvalds committed
1303 1304
 */
static int
1305
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
Linus Torvalds's avatar
Linus Torvalds committed
1306 1307
{
	struct address_space *mapping = inode->i_mapping;
1308
	long nr_to_write = wbc->nr_to_write;
1309
	unsigned dirty;
Linus Torvalds's avatar
Linus Torvalds committed
1310 1311
	int ret;

1312
	WARN_ON(!(inode->i_state & I_SYNC));
Linus Torvalds's avatar
Linus Torvalds committed
1313

1314 1315
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

Linus Torvalds's avatar
Linus Torvalds committed
1316 1317
	ret = do_writepages(mapping, wbc);

1318 1319 1320
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1321 1322 1323
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1324
	 */
1325
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1326
		int err = filemap_fdatawait(mapping);
Linus Torvalds's avatar
Linus Torvalds committed
1327 1328 1329 1330
		if (ret == 0)
			ret = err;
	}

1331 1332 1333 1334 1335
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1336
	spin_lock(&inode->i_lock);
1337

1338
	dirty = inode->i_state & I_DIRTY;
1339
	if (inode->i_state & I_DIRTY_TIME) {
1340
		if ((dirty & I_DIRTY_INODE) ||
1341
		    wbc->sync_mode == WB_SYNC_ALL ||
1342 1343 1344 1345 1346 1347 1348 1349 1350
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1351
	inode->i_state &= ~dirty;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1369
	spin_unlock(&inode->i_lock);
1370

1371 1372
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1373
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1374
	if (dirty & ~I_DIRTY_PAGES) {
1375
		int err = write_inode(inode, wbc);
Linus Torvalds's avatar
Linus Torvalds committed
1376 1377 1378
		if (ret == 0)
			ret = err;
	}
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1391 1392
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1393
{
1394
	struct bdi_writeback *wb;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1407 1408 1409
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1410
		 */
1411
		__inode_wait_for_writeback(inode);
1412 1413 1414
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
1415 1416 1417 1418 1419 1420
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1421
	 */
1422
	if (!(inode->i_state & I_DIRTY_ALL) &&
1423 1424
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1425 1426
		goto out;
	inode->i_state |= I_SYNC;
1427
	wbc_attach_and_unlock_inode(wbc, inode);
1428

1429
	ret = __writeback_single_inode(inode, wbc);
Linus Torvalds's avatar
Linus Torvalds committed
1430

1431
	wbc_detach_inode(wbc);
1432 1433

	wb = inode_to_wb_and_lock_list(inode);
1434
	spin_lock(&inode->i_lock);
1435 1436 1437 1438
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1439
	if (!(inode->i_state & I_DIRTY_ALL))
1440
		inode_io_list_del_locked(inode, wb);
1441
	spin_unlock(&wb->list_lock);
Joern Engel's avatar
Joern Engel committed
1442
	inode_sync_complete(inode);
1443 1444
out:
	spin_unlock(&inode->i_lock);
Linus Torvalds's avatar
Linus Torvalds committed
1445 1446 1447
	return ret;
}

1448
static long writeback_chunk_size(struct bdi_writeback *wb,
1449
				 struct wb_writeback_work *work)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1468
	else {
1469
		pages = min(wb->avg_write_bandwidth / 2,
1470
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1471 1472 1473 1474
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1475 1476 1477 1478

	return pages;
}

1479 1480
/*
 * Write a portion of b_io inodes which belong to @sb.
1481
 *
1482
 * Return the number of pages and/or inodes written.
1483 1484 1485 1486
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1487
 */
1488 1489 1490
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
Linus Torvalds's avatar
Linus Torvalds committed
1491
{
1492 1493 1494 1495 1496
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1497
		.for_sync		= work->for_sync,
1498 1499 1500 1501 1502 1503 1504 1505
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1506
	while (!list_empty(&wb->b_io)) {
1507
		struct inode *inode = wb_inode(wb->b_io.prev);
1508
		struct bdi_writeback *tmp_wb;
1509 1510

		if (inode->i_sb != sb) {
1511
			if (work->sb) {
1512 1513 1514 1515 1516
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1517
				redirty_tail(inode, wb);
1518 1519 1520 1521 1522 1523 1524 1525
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1526
			break;
1527 1528
		}

1529
		/*
1530 1531
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1532 1533
		 * kind writeout is handled by the freer.
		 */
1534
		spin_lock(&inode->i_lock);
1535
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1536
			spin_unlock(&inode->i_lock);
1537
			redirty_tail(inode, wb);
1538 1539
			continue;
		}
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1555 1556
		spin_unlock(&wb->list_lock);

1557 1558 1559 1560 1561
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1562 1563 1564 1565
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1566
			spin_lock(&wb->list_lock);
1567 1568
			continue;
		}
1569
		inode->i_state |= I_SYNC;
1570