Commit 0734e00e authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'parisc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux

Pull parisc updates from Helge Deller:
 "Lots of small enhancements and fixes in this patchset:

   - improved the x86-64 compatibility for PCI cards by returning -1UL
     for timed out MMIO transactions (instead of crashing)

   - fixed HPMC handler for PAT machines: size needs to be multiple of 16

   - prepare machine_power_off() to be able to turn rp3410 and c8000
     machines off via IMPI

   - added code to extract machine info for usage with qemu

   - some init sections fixes

   - lots of fixes for sparse-, ubsan- and uninitalized variables
     warnings"

* 'parisc-4.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
  parisc: Fix out of array access in match_pci_device()
  parisc: Add code generator for Qemu/SeaBIOS machine info
  parisc/pci: Switch LBA PCI bus from Hard Fail to Soft Fail mode
  parisc: Fix HPMC handler by increasing size to multiple of 16 bytes
  parisc: Directly call machine_power_off() in power button driver
  parisc: machine_power_off() should call pm_power_off()
  parisc/Kconfig: SMP kernels boot on all machines
  parisc: Silence uninitialized variable warning in dbl_to_sgl_fcnvff()
  parisc: Move various functions and strings to init section
  parisc: Convert MAP_TYPE to cover 4 bits on parisc
  parisc: Force to various endian types for sparse
  parisc/gscps2: Fix sparse warnings
  parisc/led: Fix sparse warnings
  parisc/parport_gsc: Use NULL to avoid sparse warning
  parisc/stifb: Use fb_memset() to avoid sparse warning
parents 4608f064 615b2665
......@@ -276,10 +276,8 @@ config SMP
than one CPU, say Y.
If you say N here, the kernel will run on uni- and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
uniprocessor machines. On a uniprocessor machine, the kernel
will run faster if you say N here.
machines, but will use only one CPU of a multiprocessor machine.
On a uniprocessor machine, the kernel will run faster if you say N.
See also <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO
available at <http://www.tldp.org/docs.html#howto>.
......
......@@ -183,15 +183,15 @@ static inline unsigned char readb(const volatile void __iomem *addr)
}
static inline unsigned short readw(const volatile void __iomem *addr)
{
return le16_to_cpu(__raw_readw(addr));
return le16_to_cpu((__le16 __force) __raw_readw(addr));
}
static inline unsigned int readl(const volatile void __iomem *addr)
{
return le32_to_cpu(__raw_readl(addr));
return le32_to_cpu((__le32 __force) __raw_readl(addr));
}
static inline unsigned long long readq(const volatile void __iomem *addr)
{
return le64_to_cpu(__raw_readq(addr));
return le64_to_cpu((__le64 __force) __raw_readq(addr));
}
static inline void writeb(unsigned char b, volatile void __iomem *addr)
......@@ -200,15 +200,15 @@ static inline void writeb(unsigned char b, volatile void __iomem *addr)
}
static inline void writew(unsigned short w, volatile void __iomem *addr)
{
__raw_writew(cpu_to_le16(w), addr);
__raw_writew((__u16 __force) cpu_to_le16(w), addr);
}
static inline void writel(unsigned int l, volatile void __iomem *addr)
{
__raw_writel(cpu_to_le32(l), addr);
__raw_writel((__u32 __force) cpu_to_le32(l), addr);
}
static inline void writeq(unsigned long long q, volatile void __iomem *addr)
{
__raw_writeq(cpu_to_le64(q), addr);
__raw_writeq((__u64 __force) cpu_to_le64(q), addr);
}
#define readb readb
......
......@@ -13,7 +13,7 @@
#define MAP_SHARED 0x01 /* Share changes */
#define MAP_PRIVATE 0x02 /* Changes are private */
#define MAP_SHARED_VALIDATE 0x03 /* share + validate extension flags */
#define MAP_TYPE 0x03 /* Mask for type of mapping */
#define MAP_TYPE 0x2b /* Mask for type of mapping, includes bits 0x08 and 0x20 */
#define MAP_FIXED 0x04 /* Interpret addr exactly */
#define MAP_ANONYMOUS 0x10 /* don't use a file */
......
......@@ -135,7 +135,7 @@ static int parisc_driver_probe(struct device *dev)
return rc;
}
static int parisc_driver_remove(struct device *dev)
static int __exit parisc_driver_remove(struct device *dev)
{
struct parisc_device *pa_dev = to_parisc_device(dev);
struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
......@@ -205,7 +205,7 @@ static int match_and_count(struct device * dev, void * data)
* Use by IOMMU support to "guess" the right size IOPdir.
* Formula is something like memsize/(num_iommu * entry_size).
*/
int count_parisc_driver(struct parisc_driver *driver)
int __init count_parisc_driver(struct parisc_driver *driver)
{
struct match_count m = {
.driver = driver,
......@@ -268,7 +268,7 @@ static struct parisc_device *find_device_by_addr(unsigned long hpa)
* Walks up the device tree looking for a device of the specified type.
* If it finds it, it returns it. If not, it returns NULL.
*/
const struct parisc_device *
const struct parisc_device * __init
find_pa_parent_type(const struct parisc_device *padev, int type)
{
const struct device *dev = &padev->dev;
......@@ -397,7 +397,7 @@ static void setup_bus_id(struct parisc_device *padev)
dev_set_name(&padev->dev, name);
}
struct parisc_device * create_tree_node(char id, struct device *parent)
struct parisc_device * __init create_tree_node(char id, struct device *parent)
{
struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
......@@ -471,7 +471,7 @@ static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
return alloc_tree_node(parent, modpath->mod);
}
struct parisc_device *
struct parisc_device * __init
alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
{
int status;
......@@ -609,7 +609,7 @@ struct bus_type parisc_bus_type = {
.uevent = parisc_uevent,
.dev_groups = parisc_device_groups,
.probe = parisc_driver_probe,
.remove = parisc_driver_remove,
.remove = __exit_p(parisc_driver_remove),
};
/**
......@@ -619,7 +619,7 @@ struct bus_type parisc_bus_type = {
* Search the driver list for a driver that is willing to manage
* this device.
*/
int register_parisc_device(struct parisc_device *dev)
int __init register_parisc_device(struct parisc_device *dev)
{
if (!dev)
return 0;
......@@ -651,6 +651,10 @@ static int match_pci_device(struct device *dev, int index,
(modpath->mod == PCI_FUNC(devfn)));
}
/* index might be out of bounds for bc[] */
if (index >= 6)
return 0;
id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
return (modpath->bc[index] == id);
}
......@@ -791,7 +795,7 @@ EXPORT_SYMBOL(device_to_hwpath);
static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
struct device *parent);
void walk_lower_bus(struct parisc_device *dev)
static void walk_lower_bus(struct parisc_device *dev)
{
unsigned long io_io_low, io_io_high;
......@@ -857,7 +861,7 @@ static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
* PDC doesn't tell us about all devices in the system. This routine
* finds devices connected to the central bus.
*/
void walk_central_bus(void)
void __init walk_central_bus(void)
{
walk_native_bus(CENTRAL_BUS_ADDR,
CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
......@@ -886,7 +890,7 @@ static void print_parisc_device(struct parisc_device *dev)
/**
* init_parisc_bus - Some preparation to be done before inventory
*/
void init_parisc_bus(void)
void __init init_parisc_bus(void)
{
if (bus_register(&parisc_bus_type))
panic("Could not register PA-RISC bus type\n");
......@@ -895,6 +899,171 @@ void init_parisc_bus(void)
get_device(&root);
}
static __init void qemu_header(void)
{
int num;
unsigned long *p;
pr_info("--- cut here ---\n");
pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n");
pr_cont("/* generated with Linux kernel */\n");
pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n");
pr_info("#define PARISC_MODEL \"%s\"\n\n",
boot_cpu_data.pdc.sys_model_name);
pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, "
"0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n",
#define p ((unsigned long *)&boot_cpu_data.pdc.model)
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
#undef p
pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n",
boot_cpu_data.pdc.versions);
pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n",
boot_cpu_data.pdc.cpuid);
pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n",
boot_cpu_data.pdc.capabilities);
pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n",
#ifdef CONFIG_64BIT
(unsigned long)(PAGE0->mem_pdc_hi) << 32 |
#endif
(unsigned long)PAGE0->mem_pdc);
pr_info("#define PARISC_PDC_CACHE_INFO");
p = (unsigned long *) &cache_info;
for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) {
if (((num % 5) == 0)) {
pr_cont(" \\\n");
pr_info("\t");
}
pr_cont("%s0x%04lx",
num?", ":"", *p++);
}
pr_cont("\n\n");
}
static __init int qemu_print_hpa(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long hpa = dev->hpa.start;
pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa);
pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa);
pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa);
pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa);
return 0;
}
static __init void qemu_footer(void)
{
pr_info("\n\n#define PARISC_DEVICE_LIST \\\n");
for_each_padev(qemu_print_hpa, NULL);
pr_cont("\t{ 0, }\n");
pr_info("--- cut here ---\n");
}
/* print iodc data of the various hpa modules for qemu inclusion */
static __init int qemu_print_iodc_data(struct device *lin_dev, void *data)
{
struct parisc_device *dev = to_parisc_device(lin_dev);
unsigned long count;
unsigned long hpa = dev->hpa.start;
int status;
struct pdc_iodc iodc_data;
int mod_index;
struct pdc_system_map_mod_info pdc_mod_info;
struct pdc_module_path mod_path;
status = pdc_iodc_read(&count, hpa, 0,
&iodc_data, sizeof(iodc_data));
if (status != PDC_OK) {
pr_info("No IODC data for hpa 0x%08lx\n", hpa);
return 0;
}
pr_info("\n");
pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n",
hpa, parisc_hardware_description(&dev->id));
mod_index = 0;
do {
status = pdc_system_map_find_mods(&pdc_mod_info,
&mod_path, mod_index++);
} while (status == PDC_OK && pdc_mod_info.mod_addr != hpa);
pr_info("static struct pdc_system_map_mod_info"
" mod_info_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%x,\n", \
(unsigned int)pdc_mod_info.member)
DO(mod_addr);
DO(mod_pgs);
DO(add_addrs);
pr_cont("};\n");
#undef DO
pr_info("static struct pdc_module_path "
"mod_path_hpa_%08lx = {\n", hpa);
pr_cont("\t.path = { ");
pr_cont(".flags = 0x%x, ", mod_path.path.flags);
pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ",
(unsigned char)mod_path.path.bc[0],
(unsigned char)mod_path.path.bc[1],
(unsigned char)mod_path.path.bc[2],
(unsigned char)mod_path.path.bc[3],
(unsigned char)mod_path.path.bc[4],
(unsigned char)mod_path.path.bc[5]);
pr_cont(".mod = 0x%x ", mod_path.path.mod);
pr_cont(" },\n");
pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n",
mod_path.layers[0], mod_path.layers[1], mod_path.layers[2],
mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]);
pr_cont("};\n");
pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa);
#define DO(member) \
pr_cont("\t." #member " = 0x%04lx,\n", \
(unsigned long)iodc_data.member)
DO(hversion_model);
DO(hversion);
DO(spa);
DO(type);
DO(sversion_rev);
DO(sversion_model);
DO(sversion_opt);
DO(rev);
DO(dep);
DO(features);
DO(checksum);
DO(length);
#undef DO
pr_cont("\t/* pad: 0x%04x, 0x%04x */\n",
iodc_data.pad[0], iodc_data.pad[1]);
pr_cont("};\n");
pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs);
pr_info("#define HPA_%08lx_add_addr ", hpa);
count = 0;
if (dev->num_addrs == 0)
pr_cont("0");
while (count < dev->num_addrs) {
pr_cont("0x%08lx, ", dev->addr[count]);
count++;
}
pr_cont("\n\n");
return 0;
}
static int print_one_device(struct device * dev, void * data)
{
......@@ -908,7 +1077,13 @@ static int print_one_device(struct device * dev, void * data)
/**
* print_parisc_devices - Print out a list of devices found in this system
*/
void print_parisc_devices(void)
void __init print_parisc_devices(void)
{
for_each_padev(print_one_device, NULL);
#define PARISC_QEMU_MACHINE_HEADER 0
if (PARISC_QEMU_MACHINE_HEADER) {
qemu_header();
for_each_padev(qemu_print_iodc_data, NULL);
qemu_footer();
}
}
......@@ -41,7 +41,7 @@
* are guessed. If you know the correct name, please let us know.
*/
static struct hp_hardware hp_hardware_list[] = {
static struct hp_hardware hp_hardware_list[] __initdata = {
{HPHW_NPROC,0x01,0x4,0x0,"Indigo (840, 930)"},
{HPHW_NPROC,0x8,0x4,0x01,"Firefox(825,925)"},
{HPHW_NPROC,0xA,0x4,0x01,"Top Gun (835,834,935,635)"},
......@@ -1238,7 +1238,7 @@ static struct hp_cpu_type_mask {
unsigned short model;
unsigned short mask;
enum cpu_type cpu;
} hp_cpu_type_mask_list[] = {
} hp_cpu_type_mask_list[] __initdata = {
{ 0x0000, 0x0ff0, pcx }, /* 0x0000 - 0x000f */
{ 0x0048, 0x0ff0, pcxl }, /* 0x0040 - 0x004f */
......@@ -1325,17 +1325,17 @@ const char * const cpu_name_version[][2] = {
[pcxt] = { "PA7100 (PCX-T)", "1.1b" },
[pcxt_] = { "PA7200 (PCX-T')", "1.1c" },
[pcxl] = { "PA7100LC (PCX-L)", "1.1d" },
[pcxl2] = { "PA7300LC (PCX-L2)", "1.1e" },
[pcxl2] = { "PA7300LC (PCX-L2)","1.1e" },
[pcxu] = { "PA8000 (PCX-U)", "2.0" },
[pcxu_] = { "PA8200 (PCX-U+)", "2.0" },
[pcxw] = { "PA8500 (PCX-W)", "2.0" },
[pcxw_] = { "PA8600 (PCX-W+)", "2.0" },
[pcxw2] = { "PA8700 (PCX-W2)", "2.0" },
[mako] = { "PA8800 (Mako)", "2.0" },
[mako2] = { "PA8900 (Shortfin)", "2.0" }
[mako2] = { "PA8900 (Shortfin)","2.0" }
};
const char *parisc_hardware_description(struct parisc_device_id *id)
const char * __init parisc_hardware_description(struct parisc_device_id *id)
{
struct hp_hardware *listptr;
......@@ -1373,7 +1373,7 @@ const char *parisc_hardware_description(struct parisc_device_id *id)
/* Interpret hversion (ret[0]) from PDC_MODEL(4)/PDC_MODEL_INFO(0) */
enum cpu_type
enum cpu_type __init
parisc_get_cpu_type(unsigned long hversion)
{
struct hp_cpu_type_mask *ptr;
......
......@@ -84,6 +84,7 @@ END(hpmc_pim_data)
.text
.import intr_save, code
.align 16
ENTRY_CFI(os_hpmc)
.os_hpmc:
......@@ -300,12 +301,15 @@ os_hpmc_6:
b .
nop
.align 16 /* make function length multiple of 16 bytes */
ENDPROC_CFI(os_hpmc)
.os_hpmc_end:
__INITRODATA
.globl os_hpmc_size
.align 4
.export os_hpmc_size
.type os_hpmc_size, @object
.size os_hpmc_size, 4
os_hpmc_size:
.word .os_hpmc_end-.os_hpmc
......@@ -138,6 +138,10 @@ void machine_power_off(void)
pdc_soft_power_button(0);
pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN);
/* ipmi_poweroff may have been installed. */
if (pm_power_off)
pm_power_off();
/* It seems we have no way to power the system off via
* software. The user has to press the button himself. */
......@@ -151,7 +155,7 @@ void machine_power_off(void)
for (;;);
}
void (*pm_power_off)(void) = machine_power_off;
void (*pm_power_off)(void);
EXPORT_SYMBOL(pm_power_off);
void flush_thread(void)
......
......@@ -148,7 +148,7 @@ dbl_to_sgl_fcnvff(
register int src_exponent, dest_exponent, dest_mantissa;
register boolean inexact = FALSE, guardbit = FALSE, stickybit = FALSE;
register boolean lsb_odd = FALSE;
boolean is_tiny;
boolean is_tiny = FALSE;
Dbl_copyfromptr(srcptr,srcp1,srcp2);
src_exponent = Dbl_exponent(srcp1);
......
......@@ -91,7 +91,7 @@ struct gscps2port {
struct parisc_device *padev;
struct serio *port;
spinlock_t lock;
char *addr;
char __iomem *addr;
u8 act, append; /* position in buffer[] */
struct {
u8 data;
......@@ -114,7 +114,7 @@ struct gscps2port {
* wait_TBE() - wait for Transmit Buffer Empty
*/
static int wait_TBE(char *addr)
static int wait_TBE(char __iomem *addr)
{
int timeout = 25000; /* device is expected to react within 250 msec */
while (gscps2_readb_status(addr) & GSC_STAT_TBNE) {
......@@ -146,14 +146,14 @@ static void gscps2_flush(struct gscps2port *ps2port)
static inline int gscps2_writeb_output(struct gscps2port *ps2port, u8 data)
{
unsigned long flags;
char *addr = ps2port->addr;
char __iomem *addr = ps2port->addr;
if (!wait_TBE(addr)) {
printk(KERN_DEBUG PFX "timeout - could not write byte %#x\n", data);
return 0;
}
while (gscps2_readb_status(ps2port->addr) & GSC_STAT_RBNE)
while (gscps2_readb_status(addr) & GSC_STAT_RBNE)
/* wait */;
spin_lock_irqsave(&ps2port->lock, flags);
......@@ -200,13 +200,12 @@ static void gscps2_enable(struct gscps2port *ps2port, int enable)
static void gscps2_reset(struct gscps2port *ps2port)
{
char *addr = ps2port->addr;
unsigned long flags;
/* reset the interface */
spin_lock_irqsave(&ps2port->lock, flags);
gscps2_flush(ps2port);
writeb(0xff, addr+GSC_RESET);
writeb(0xff, ps2port->addr + GSC_RESET);
gscps2_flush(ps2port);
spin_unlock_irqrestore(&ps2port->lock, flags);
}
......
......@@ -1403,9 +1403,27 @@ lba_hw_init(struct lba_device *d)
WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
}
/* Set HF mode as the default (vs. -1 mode). */
/*
* Hard Fail vs. Soft Fail on PCI "Master Abort".
*
* "Master Abort" means the MMIO transaction timed out - usually due to
* the device not responding to an MMIO read. We would like HF to be
* enabled to find driver problems, though it means the system will
* crash with a HPMC.
*
* In SoftFail mode "~0L" is returned as a result of a timeout on the
* pci bus. This is like how PCI busses on x86 and most other
* architectures behave. In order to increase compatibility with
* existing (x86) PCI hardware and existing Linux drivers we enable
* Soft Faul mode on PA-RISC now too.
*/
stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
#if defined(ENABLE_HARDFAIL)
WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#else
WRITE_REG32(stat & ~HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#endif
/*
** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
......
......@@ -176,7 +176,7 @@ static int led_proc_open(struct inode *inode, struct file *file)
}
static ssize_t led_proc_write(struct file *file, const char *buf,
static ssize_t led_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
void *data = PDE_DATA(file_inode(file));
......@@ -250,7 +250,7 @@ static int __init led_create_procfs(void)
if (led_type == -1) return -1;
proc_pdc_root = proc_mkdir("pdc", 0);
proc_pdc_root = proc_mkdir("pdc", NULL);
if (!proc_pdc_root) return -1;
if (!lcd_no_led_support)
......
......@@ -95,8 +95,7 @@ static void process_shutdown(void)
/* send kill signal */
if (kill_cad_pid(SIGINT, 1)) {
/* just in case killing init process failed */
if (pm_power_off)
pm_power_off();
machine_power_off();
}
}
}
......
......@@ -256,7 +256,7 @@ struct parport *parport_gsc_probe_port(unsigned long base,
}
priv->ctr = 0xc;
priv->ctr_writable = 0xff;
priv->dma_buf = 0;
priv->dma_buf = NULL;
priv->dma_handle = 0;
p->base = base;
p->base_hi = base_hi;
......
......@@ -527,7 +527,7 @@ rattlerSetupPlanes(struct stifb_info *fb)
fb->id = saved_id;
for (y = 0; y < fb->info.var.yres; ++y)
memset(fb->info.screen_base + y * fb->info.fix.line_length,
fb_memset(fb->info.screen_base + y * fb->info.fix.line_length,
0xff, fb->info.var.xres * fb->info.var.bits_per_pixel/8);
CRX24_SET_OVLY_MASK(fb);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment