umc-proxstream2.c 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
 *
 * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
 * Copyright (C) 2015 Socionext Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <asm/processor.h>

#include "../init.h"
#include "../soc-info.h"
#include "ddrmphy-regs.h"
19
#include "umc-regs.h"
20

21 22
#define CH_NR	3

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
enum dram_freq {
	FREQ_1866M,
	FREQ_2133M,
	FREQ_NR,
};

enum dram_size {
	SIZE_0,
	SIZE_512M,
	SIZE_1G,
	SIZE_NR,
};

static u32 ddrphy_pgcr2[FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
static u32 ddrphy_ptr0[FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
static u32 ddrphy_ptr1[FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
static u32 ddrphy_ptr3[FREQ_NR] = {0x15171e45, 0x18182357};
static u32 ddrphy_ptr4[FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
static u32 ddrphy_dtpr0[FREQ_NR] = {0x35a00d88, 0x39e40e88};
static u32 ddrphy_dtpr1[FREQ_NR] = {0x2288cc2c, 0x228a04d0};
static u32 ddrphy_dtpr2[FREQ_NR] = {0x50005e00, 0x50006a00};
static u32 ddrphy_dtpr3[FREQ_NR] = {0x0010cb49, 0x0010ec89};
static u32 ddrphy_mr0[FREQ_NR] = {0x00000115, 0x00000125};
static u32 ddrphy_mr2[FREQ_NR] = {0x000002a0, 0x000002a8};

48 49 50
/* dependent on package and board design */
static u32 ddrphy_acbdlr0[CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static u32 umc_cmdctla[FREQ_NR] = {0x66DD131D, 0x77EE1722};
/*
 * The ch2 is a different generation UMC core.
 * The register spec is different, unfortunately.
 */
static u32 umc_cmdctlb_ch01[FREQ_NR] = {0x13E87C44, 0x18F88C44};
static u32 umc_cmdctlb_ch2[FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
static u32 umc_spcctla[FREQ_NR][SIZE_NR] = {
	{0x00000000, 0x004A071D, 0x0078071D},
	{0x00000000, 0x0055081E, 0x0089081E},
};

static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
/* The ch2 is different for some reason only hardware guys know... */
static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};

/* DDR multiPHY */
static inline int ddrphy_get_rank(int dx)
{
	return dx / 2;
}

static void ddrphy_fifo_reset(void __iomem *phy_base)
{
	u32 tmp;

	tmp = readl(phy_base + DMPHY_PGCR0);
	tmp &= ~DMPHY_PGCR0_PHYFRST;
	writel(tmp, phy_base + DMPHY_PGCR0);

	udelay(1);

	tmp |= DMPHY_PGCR0_PHYFRST;
	writel(tmp, phy_base + DMPHY_PGCR0);

	udelay(1);
}

static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
{
	u32 tmp;

	tmp = readl(phy_base + DMPHY_PGCR1);

	if (enable)
		tmp &= ~DMPHY_PGCR1_INHVT;
	else
		tmp |= DMPHY_PGCR1_INHVT;

	writel(tmp, phy_base + DMPHY_PGCR1);

	if (!enable) {
		while (!(readl(phy_base + DMPHY_PGSR1) & DMPHY_PGSR1_VTSTOP))
			cpu_relax();
	}
}

static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
{
	int dx;
	u32 lcdlr1, rdqsd;
	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;

	ddrphy_vt_ctrl(phy_base, 0);

	for (dx = 0; dx < nr_dx; dx++) {
		lcdlr1 = readl(dx_base + DMPHY_DX_LCDLR1);
		rdqsd = (lcdlr1 >> 8) & 0xff;
		rdqsd = clamp(rdqsd + step, 0U, 0xffU);
		lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
		writel(lcdlr1, dx_base + DMPHY_DX_LCDLR1);
		readl(dx_base + DMPHY_DX_LCDLR1); /* relax */
		dx_base += DMPHY_DX_STRIDE;
	}

	ddrphy_vt_ctrl(phy_base, 1);
}

static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
{
	void __iomem *dx_base = phy_base + DMPHY_DX_BASE;
	const int nr_dx = width / 8;
	int dx, rank;
	u32 gtr;
	int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;

	for (dx = 0; dx < nr_dx; dx++) {
		gtr = readl(dx_base + DMPHY_DX_GTR);
		for (rank = 0; rank < 4; rank++) {
			dgsl = gtr & 0x7;
			/* if dgsl is zero, this rank was not trained. skip. */
			if (dgsl) {
				dgsl_min = min(dgsl_min, dgsl);
				dgsl_max = max(dgsl_max, dgsl);
			}
			gtr >>= 3;
		}
		dx_base += DMPHY_DX_STRIDE;
	}

	if (dgsl_min != dgsl_max)
		printf("DQS Gateing System Latencies are not all leveled.\n");

	return dgsl_max;
}

158 159
static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
			int ch)
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
{
	u32 tmp;
	void __iomem *zq_base, *dx_base;
	int zq, dx;
	int nr_dx;

	nr_dx = width / 8;

	writel(DMPHY_PIR_ZCALBYP,        phy_base + DMPHY_PIR);
	/*
	 * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
	 * to avoid read error issue.
	 */
	writel(0x07d81e37,         phy_base + DMPHY_PGCR0);
	writel(0x0200c4e0,         phy_base + DMPHY_PGCR1);

	tmp = ddrphy_pgcr2[freq];
	if (width >= 32)
		tmp |= DMPHY_PGCR2_DUALCHN | DMPHY_PGCR2_ACPDDC;
	writel(tmp, phy_base + DMPHY_PGCR2);

	writel(ddrphy_ptr0[freq],  phy_base + DMPHY_PTR0);
	writel(ddrphy_ptr1[freq],  phy_base + DMPHY_PTR1);
	writel(0x00083def,         phy_base + DMPHY_PTR2);
	writel(ddrphy_ptr3[freq],  phy_base + DMPHY_PTR3);
	writel(ddrphy_ptr4[freq],  phy_base + DMPHY_PTR4);

187 188
	writel(ddrphy_acbdlr0[ch], phy_base + DMPHY_ACBDLR0);

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	writel(0x55555555, phy_base + DMPHY_ACIOCR1);
	writel(0x00000000, phy_base + DMPHY_ACIOCR2);
	writel(0x55555555, phy_base + DMPHY_ACIOCR3);
	writel(0x00000000, phy_base + DMPHY_ACIOCR4);
	writel(0x00000055, phy_base + DMPHY_ACIOCR5);
	writel(0x00181aa4, phy_base + DMPHY_DXCCR);

	writel(0x0024641e, phy_base + DMPHY_DSGCR);
	writel(0x0000040b, phy_base + DMPHY_DCR);
	writel(ddrphy_dtpr0[freq], phy_base + DMPHY_DTPR0);
	writel(ddrphy_dtpr1[freq], phy_base + DMPHY_DTPR1);
	writel(ddrphy_dtpr2[freq], phy_base + DMPHY_DTPR2);
	writel(ddrphy_dtpr3[freq], phy_base + DMPHY_DTPR3);
	writel(ddrphy_mr0[freq], phy_base + DMPHY_MR0);
	writel(0x00000006,       phy_base + DMPHY_MR1);
	writel(ddrphy_mr2[freq], phy_base + DMPHY_MR2);
	writel(0x00000000,       phy_base + DMPHY_MR3);

	tmp = 0;
	for (dx = 0; dx < nr_dx; dx++)
		tmp |= BIT(DMPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
	writel(0x90003087 | tmp, phy_base + DMPHY_DTCR);

	writel(0x00000000, phy_base + DMPHY_DTAR0);
	writel(0x00000008, phy_base + DMPHY_DTAR1);
	writel(0x00000010, phy_base + DMPHY_DTAR2);
	writel(0x00000018, phy_base + DMPHY_DTAR3);
	writel(0xdd22ee11, phy_base + DMPHY_DTDR0);
	writel(0x7788bb44, phy_base + DMPHY_DTDR1);

	/* impedance control settings */
	writel(0x04048900, phy_base + DMPHY_ZQCR);

	zq_base = phy_base + DMPHY_ZQ_BASE;
	for (zq = 0; zq < 4; zq++) {
		/*
		 * board-dependent
		 * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
		 */
		writel(0x0007BB5D, zq_base + DMPHY_ZQ_PR);
		zq_base += DMPHY_ZQ_STRIDE;
	}

	/* DATX8 settings */
	dx_base = phy_base + DMPHY_DX_BASE;
	for (dx = 0; dx < 4; dx++) {
		tmp = readl(dx_base + DMPHY_DX_GCR0);
		tmp &= ~DMPHY_DX_GCR0_WLRKEN_MASK;
		tmp |= BIT(DMPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
						DMPHY_DX_GCR0_WLRKEN_MASK;
		writel(tmp, dx_base + DMPHY_DX_GCR0);

		writel(0x00000000, dx_base + DMPHY_DX_GCR1);
		writel(0x00000000, dx_base + DMPHY_DX_GCR2);
		writel(0x00000000, dx_base + DMPHY_DX_GCR3);
		dx_base += DMPHY_DX_STRIDE;
	}

	while (!(readl(phy_base + DMPHY_PGSR0) & DMPHY_PGSR0_IDONE))
		cpu_relax();

	ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
}

struct ddrphy_init_sequence {
	char *description;
	u32 init_flag;
	u32 done_flag;
	u32 err_flag;
};

static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
	{
		"Impedance Calibration",
		DMPHY_PIR_ZCAL,
		DMPHY_PGSR0_ZCDONE,
		DMPHY_PGSR0_ZCERR,
	},
	{ /* sentinel */ }
};

static const struct ddrphy_init_sequence dram_init_sequence[] = {
	{
		"DRAM Initialization",
		DMPHY_PIR_DRAMRST | DMPHY_PIR_DRAMINIT,
		DMPHY_PGSR0_DIDONE,
		0,
	},
	{ /* sentinel */ }
};

static const struct ddrphy_init_sequence training_sequence[] = {
	{
		"Write Leveling",
		DMPHY_PIR_WL,
		DMPHY_PGSR0_WLDONE,
		DMPHY_PGSR0_WLERR,
	},
	{
		"Read DQS Gate Training",
		DMPHY_PIR_QSGATE,
		DMPHY_PGSR0_QSGDONE,
		DMPHY_PGSR0_QSGERR,
	},
	{
		"Write Leveling Adjustment",
		DMPHY_PIR_WLADJ,
		DMPHY_PGSR0_WLADONE,
		DMPHY_PGSR0_WLAERR,
	},
	{
		"Read Bit Deskew",
		DMPHY_PIR_RDDSKW,
		DMPHY_PGSR0_RDDONE,
		DMPHY_PGSR0_RDERR,
	},
	{
		"Write Bit Deskew",
		DMPHY_PIR_WRDSKW,
		DMPHY_PGSR0_WDDONE,
		DMPHY_PGSR0_WDERR,
	},
	{
		"Read Eye Training",
		DMPHY_PIR_RDEYE,
		DMPHY_PGSR0_REDONE,
		DMPHY_PGSR0_REERR,
	},
	{
		"Write Eye Training",
		DMPHY_PIR_WREYE,
		DMPHY_PGSR0_WEDONE,
		DMPHY_PGSR0_WEERR,
	},
	{ /* sentinel */ }
};

static int __ddrphy_training(void __iomem *phy_base,
			     const struct ddrphy_init_sequence *seq)
{
	const struct ddrphy_init_sequence *s;
	u32 pgsr0;
	u32 init_flag = DMPHY_PIR_INIT;
	u32 done_flag = DMPHY_PGSR0_IDONE;
	int timeout = 50000; /* 50 msec is long enough */
#ifdef DISPLAY_ELAPSED_TIME
	ulong start = get_timer(0);
#endif

	for (s = seq; s->description; s++) {
		init_flag |= s->init_flag;
		done_flag |= s->done_flag;
	}

	writel(init_flag, phy_base + DMPHY_PIR);

	do {
		if (--timeout < 0) {
			printf("%s: error: timeout during DDR training\n",
			       __func__);
			return -ETIMEDOUT;
		}
		udelay(1);
		pgsr0 = readl(phy_base + DMPHY_PGSR0);
	} while ((pgsr0 & done_flag) != done_flag);

	for (s = seq; s->description; s++) {
		if (pgsr0 & s->err_flag) {
			printf("%s: error: %s failed\n", __func__,
			       s->description);
			return -EIO;
		}
	}

#ifdef DISPLAY_ELAPSED_TIME
	printf("%s: info: elapsed time %ld msec\n", get_timer(start));
#endif

	return 0;
}

static int ddrphy_impedance_calibration(void __iomem *phy_base)
{
	int ret;
	u32 tmp;

	ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
	if (ret)
		return ret;

	/*
	 * Because of a hardware bug, IDONE flag is set when the first ZQ block
	 * is calibrated.  The flag does not guarantee the completion for all
	 * the ZQ blocks.  Wait a little more just in case.
	 */
	udelay(1);

	/* reflect ZQ settings and enable average algorithm*/
	tmp = readl(phy_base + DMPHY_ZQCR);
	tmp |= DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
	writel(tmp, phy_base + DMPHY_ZQCR);
	tmp &= ~DMPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
	tmp |= DMPHY_ZQCR_AVGEN;
	writel(tmp, phy_base + DMPHY_ZQCR);

	return 0;
}

static int ddrphy_dram_init(void __iomem *phy_base)
{
	return __ddrphy_training(phy_base, dram_init_sequence);
}

static int ddrphy_training(void __iomem *phy_base)
{
	return __ddrphy_training(phy_base, training_sequence);
}

/* UMC */
static void umc_set_system_latency(void __iomem *umc_dc_base, int phy_latency)
{
	u32 val;
	int latency;

	val = readl(umc_dc_base + UMC_RDATACTL_D0);
	latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
	latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
						UMC_RDATACTL_RAD2LTY_SHIFT;
	/*
	 * UMC works at the half clock rate of the PHY.
	 * The LSB of latency is ignored
	 */
	latency += phy_latency & ~1;

	val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
	if (latency > 0xf) {
		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
	} else {
		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
	}

	writel(val, umc_dc_base + UMC_RDATACTL_D0);
	writel(val, umc_dc_base + UMC_RDATACTL_D1);

	readl(umc_dc_base + UMC_RDATACTL_D1); /* relax */
}

/* enable/disable auto refresh */
void umc_refresh_ctrl(void __iomem *umc_dc_base, int enable)
{
	u32 tmp;

	tmp = readl(umc_dc_base + UMC_SPCSETB);
	tmp &= ~UMC_SPCSETB_AREFMD_MASK;

	if (enable)
		tmp |= UMC_SPCSETB_AREFMD_ARB;
	else
		tmp |= UMC_SPCSETB_AREFMD_REG;

	writel(tmp, umc_dc_base + UMC_SPCSETB);
	udelay(1);
}

static void umc_ud_init(void __iomem *umc_base, int ch)
{
	writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);

	if (ch == 2)
		writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
}

static void umc_dc_init(void __iomem *umc_dc_base, enum dram_freq freq,
			enum dram_size size, int ch, int width)
{
	int latency;
	u32 val;

	writel(umc_cmdctla[freq], umc_dc_base + UMC_CMDCTLA);

	writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
	       umc_dc_base + UMC_CMDCTLB);

	writel(umc_spcctla[freq][size / (width / 16)],
	       umc_dc_base + UMC_SPCCTLA);
	writel(umc_spcctlb[freq], umc_dc_base + UMC_SPCCTLB);

	val = 0x000e000e;
	latency = 12;
	/* ES2 inserted one more FF to the logic. */
	if (uniphier_get_soc_model() >= 2)
		latency += 2;

	if (latency > 0xf) {
		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
	} else {
		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
	}

	writel(val, umc_dc_base + UMC_RDATACTL_D0);
	if (width >= 32)
		writel(val, umc_dc_base + UMC_RDATACTL_D1);

	writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D0);
	if (width >= 32)
		writel(0x04060A02, umc_dc_base + UMC_WDATACTL_D1);
	writel(0x04000000, umc_dc_base + UMC_DATASET);
	writel(0x00400020, umc_dc_base + UMC_DCCGCTL);
	writel(0x00000084, umc_dc_base + UMC_FLOWCTLG);
	writel(0x00000000, umc_dc_base + UMC_ACSSETA);

	writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
	       umc_dc_base + UMC_FLOWCTLA);

	writel(0x00004400, umc_dc_base + UMC_FLOWCTLC);
	writel(0x200A0A00, umc_dc_base + UMC_SPCSETB);
	writel(0x00000520, umc_dc_base + UMC_DFICUPDCTLA);
	writel(0x0000000D, umc_dc_base + UMC_RESPCTL);

	if (ch != 2) {
		writel(0x00202000, umc_dc_base + UMC_FLOWCTLB);
		writel(0xFDBFFFFF, umc_dc_base + UMC_FLOWCTLOB0);
		writel(0xFFFFFFFF, umc_dc_base + UMC_FLOWCTLOB1);
		writel(0x00080700, umc_dc_base + UMC_BSICMAPSET);
	} else {
		writel(0x00200000, umc_dc_base + UMC_FLOWCTLB);
		writel(0x00000000, umc_dc_base + UMC_BSICMAPSET);
	}

	writel(0x00000000, umc_dc_base + UMC_ERRMASKA);
	writel(0x00000000, umc_dc_base + UMC_ERRMASKB);
}

static int umc_init(void __iomem *umc_base, enum dram_freq freq, int ch,
		    enum dram_size size, int width)
{
	void __iomem *umc_dc_base = umc_base + 0x00011000;
	void __iomem *phy_base = umc_base + 0x00030000;
	int ret;

	writel(0x00000002, umc_dc_base + UMC_INITSET);
	while (readl(umc_dc_base + UMC_INITSTAT) & BIT(2))
		cpu_relax();

	/* deassert PHY reset signals */
	writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
	       umc_dc_base + UMC_DIOCTLA);

539
	ddrphy_init(phy_base, freq, width, ch);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	ret = ddrphy_impedance_calibration(phy_base);
	if (ret)
		return ret;

	ddrphy_dram_init(phy_base);
	if (ret)
		return ret;

	umc_dc_init(umc_dc_base, freq, size, ch, width);

	umc_ud_init(umc_base, ch);

	if (size) {
		ret = ddrphy_training(phy_base);
		if (ret)
			return ret;
	}

	udelay(1);

	/* match the system latency between UMC and PHY */
	umc_set_system_latency(umc_dc_base,
			       ddrphy_get_system_latency(phy_base, width));

	udelay(1);

	/* stop auto refresh before clearing FIFO in PHY */
	umc_refresh_ctrl(umc_dc_base, 0);
	ddrphy_fifo_reset(phy_base);
	umc_refresh_ctrl(umc_dc_base, 1);

	udelay(10);

	return 0;
}

static void um_init(void __iomem *um_base)
{
	writel(0x000000ff, um_base + UMC_MBUS0);
	writel(0x000000ff, um_base + UMC_MBUS1);
	writel(0x000000ff, um_base + UMC_MBUS2);
	writel(0x000000ff, um_base + UMC_MBUS3);
}

int proxstream2_umc_init(const struct uniphier_board_data *bd)
{
	void __iomem *um_base = (void __iomem *)0x5b600000;
	void __iomem *umc_ch0_base = (void __iomem *)0x5b800000;
	void __iomem *umc_ch1_base = (void __iomem *)0x5ba00000;
	void __iomem *umc_ch2_base = (void __iomem *)0x5bc00000;
	enum dram_freq freq;
	int ret;

	switch (bd->dram_freq) {
	case 1866:
		freq = FREQ_1866M;
		break;
	case 2133:
		freq = FREQ_2133M;
		break;
	default:
		printf("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
		return -EINVAL;
	}

606 607
	ret = umc_init(umc_ch0_base, freq, 0, bd->dram_ch[0].size / SZ_256M,
		       bd->dram_ch[0].width);
608 609 610 611 612
	if (ret) {
		printf("failed to initialize UMC ch0\n");
		return ret;
	}

613 614
	ret = umc_init(umc_ch1_base, freq, 1, bd->dram_ch[1].size / SZ_256M,
		       bd->dram_ch[1].width);
615 616 617 618 619
	if (ret) {
		printf("failed to initialize UMC ch1\n");
		return ret;
	}

620 621
	ret = umc_init(umc_ch2_base, freq, 2, bd->dram_ch[2].size / SZ_256M,
		       bd->dram_ch[2].width);
622 623 624 625 626 627 628 629 630
	if (ret) {
		printf("failed to initialize UMC ch2\n");
		return ret;
	}

	um_init(um_base);

	return 0;
}