davinci_nand.c 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * NAND driver for TI DaVinci based boards.
 *
 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
 *
 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
 */

/*
 *
 * linux/drivers/mtd/nand/nand_davinci.c
 *
 * NAND Flash Driver
 *
 * Copyright (C) 2006 Texas Instruments.
 *
 * ----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * ----------------------------------------------------------------------------
 *
 *  Overview:
 *   This is a device driver for the NAND flash device found on the
 *   DaVinci board which utilizes the Samsung k9k2g08 part.
 *
 Modifications:
 ver. 1.0: Feb 2005, Vinod/Sudhakar
 -
 *
 */

#include <common.h>
45
#include <asm/io.h>
46 47 48 49
#include <nand.h>
#include <asm/arch/nand_defs.h>
#include <asm/arch/emif_defs.h>

50 51 52 53 54 55 56 57 58 59
/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT			10240
#define NAND_ECC_BUSY			0xC
#define NAND_4BITECC_MASK		0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
#define ECC_STATE_NO_ERR		0x0
#define ECC_STATE_TOO_MANY_ERRS		0x1
#define ECC_STATE_ERR_CORR_COMP_P	0x2
#define ECC_STATE_ERR_CORR_COMP_N	0x3

60 61
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;

62
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
63 64 65 66 67 68
{
	struct		nand_chip *this = mtd->priv;
	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;

	IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);

69 70
	if (ctrl & NAND_CTRL_CHANGE) {
		if ( ctrl & NAND_CLE )
71
			IO_ADDR_W |= MASK_CLE;
72
		if ( ctrl & NAND_ALE )
73
			IO_ADDR_W |= MASK_ALE;
74
		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
75 76
	}

William Juul's avatar
William Juul committed
77
	if (cmd != NAND_CMD_NONE)
78
		writeb(cmd, this->IO_ADDR_W);
79 80
}

81
#ifdef CONFIG_SYS_NAND_HW_ECC
82 83 84 85 86

static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
	int		dummy;

87
	dummy = emif_regs->NANDF1ECC;
88

89 90
	/* FIXME:  only chipselect 0 is supported for now */
	emif_regs->NANDFCR |= 1 << 8;
91 92 93 94 95 96 97
}

static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
{
	u_int32_t	ecc = 0;

	if (region == 1)
98
		ecc = emif_regs->NANDF1ECC;
99
	else if (region == 2)
100
		ecc = emif_regs->NANDF2ECC;
101
	else if (region == 3)
102
		ecc = emif_regs->NANDF3ECC;
103
	else if (region == 4)
104
		ecc = emif_regs->NANDF4ECC;
105 106 107 108 109 110 111

	return(ecc);
}

static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
	u_int32_t		tmp;
112 113 114 115 116 117 118 119 120 121 122 123 124 125
	const int region = 1;

	tmp = nand_davinci_readecc(mtd, region);

	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);

	/* Invert so that erased block ECC is correct */
	tmp = ~tmp;

	*ecc_code++ = tmp;
	*ecc_code++ = tmp >>  8;
	*ecc_code++ = tmp >> 16;
126

127 128 129 130 131 132 133 134 135 136 137 138
	/* NOTE:  the above code matches mainline Linux:
	 *	.PQR.stu ==> ~PQRstu
	 *
	 * MontaVista/TI kernels encode those bytes differently, use
	 * complicated (and allegedly sometimes-wrong) correction code,
	 * and usually shipped with U-Boot that uses software ECC:
	 *	.PQR.stu ==> PsQRtu
	 *
	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
	 * be possible to (a) change the mangling above, (b) reverse
	 * that mangling in nand_davinci_correct_data() below.
	 */
139

140
	return 0;
141 142 143 144
}

static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	struct nand_chip *this = mtd->priv;
	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	u_int32_t diff = ecc_calc ^ ecc_nand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < this->ecc.size) {
				uint8_t find_bit = 1 << ((diff >> 12) & 7);
				uint32_t find_byte = diff >> (12 + 3);

				dat[find_byte] ^= find_bit;
				MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
					 "bit ECC error at offset: %d, bit: "
					 "%d\n", find_byte, find_bit);
				return 1;
			} else {
				return -1;
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			   nothing to fix */
			MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
				 "ECC.\n");
			return 1;
		} else {
			/* Uncorrectable error */
			MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
			return -1;
		}
	}
179 180
	return(0);
}
181
#endif /* CONFIG_SYS_NAND_HW_ECC */
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
/*
 * TI uses a different layout for 4K page deviecs. Since the
 * eccpos filed can hold only a limited number of entries, adding
 * support for 4K page will result in compilation warnings
 * 4K Support will be added later
 */
#ifdef CONFIG_SYS_NAND_PAGE_2K
	.eccbytes = 40,
	.eccpos = {
		24, 25, 26, 27, 28,
		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
		59, 60, 61, 62, 63,
		},
	.oobfree = {
		{.offset = 2, .length = 22, },
	},
#endif
};

static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
	u32 val;

	switch (mode) {
	case NAND_ECC_WRITE:
	case NAND_ECC_READ:
		/*
		 * Start a new ECC calculation for reading or writing 512 bytes
		 * of data.
		 */
		val = (emif_regs->NANDFCR & ~(3 << 4)) | (1 << 12);
		emif_regs->NANDFCR = val;
		break;
	case NAND_ECC_READSYN:
		val = emif_regs->NAND4BITECC1;
		break;
	default:
		break;
	}
}

static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
	ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
	ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
	ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
	ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;

	return 0;
}

static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
					   const uint8_t *dat,
					   uint8_t *ecc_code)
{
	unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
	unsigned int const1 = 0, const2 = 0;
	unsigned char count1 = 0;

	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	/*Convert 10 bit ecc value to 8 bit */
	for (count1 = 0; count1 < 2; count1++) {
		const2 = count1 * 5;
		const1 = count1 * 2;

		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
		ecc_code[const2] = hw_4ecc[const1] & 0xFF;

		/*
		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
		 * (count1=1) and 6 bits from val2 (count1=0) or
		 * val5 (count1=1)
		 */
		ecc_code[const2 + 1] =
		    ((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
						      0xFC);

		/*
		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
		 * 4 bits from val3 (count1=0) or val6 (count1=1)
		 */
		ecc_code[const2 + 2] =
		    ((hw_4ecc[const1] >> 22) & 0xF) |
		    ((hw_4ecc[const1 + 1] << 4) & 0xF0);

		/*
		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
		 */
		ecc_code[const2 + 3] =
		    ((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
		    ((hw_4ecc[const1 + 1] >> 10) & 0xC0);

		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
		ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
	}
	return 0;
}


static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
					  uint8_t *read_ecc, uint8_t *calc_ecc)
{
	unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	int i;
	unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
	unsigned short *pspare = NULL, *pspare1 = NULL;
	unsigned int numerrors, erroraddress, errorvalue;
	u32 val;

	/*
	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
	 * will assume we are looking at an erased page and we should ignore
	 * the ECC.
	 */
	for (i = 0; i < 10; i++) {
		if (read_ecc[i] != 0xFF)
			break;
	}
	if (i == 10)
		return 0;

	/* Convert 8 bit in to 10 bit */
	pspare = (unsigned short *)&read_ecc[2];
	pspare1 = (unsigned short *)&read_ecc[0];

	/* Take 10 bits from 0th and 1st bytes */
	ecc_10bit[0] = (*pspare1) & 0x3FF;

	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
	ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
	    | (((pspare[0]) << 6) & 0x3C0);

	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
	ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;

	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
	ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
	    | ((((pspare[1])) << 2) & 0x3FC);

	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
	ecc_10bit[4] = ((pspare[1]) >> 8)
	    | ((((pspare[2])) << 8) & 0x300);

	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
	ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;

	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
	ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
	    | ((((pspare[3])) << 4) & 0x3F0);

	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
	ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;

	/*
	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
	 * Write each parity value one at a time starting from 4bit_ecc_val8
	 * to 4bit_ecc_val1.
	 */
	for (i = 7; i >= 0; i--)
		emif_regs->NAND4BITECCLOAD = ecc_10bit[i];

	/*
	 * Perform a dummy read to the EMIF Revision Code and Status register.
	 * This is required to ensure time for syndrome calculation after
	 * writing the ECC values in previous step.
	 */

	val = emif_regs->NANDFSR;

	/*
	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
	 * A syndrome value of 0 means no bit errors. If the syndrome is
	 * non-zero then go further otherwise return.
	 */
	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
	    hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
		return 0;

	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	val = emif_regs->NANDERRADD1;

	/*
	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
	 * register to 1.
	 */
	emif_regs->NANDFCR |= 1 << 13;

	/*
	 * Wait for the corr_state field (bits 8 to 11)in the
	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
	 */
	i = NAND_TIMEOUT;
	do {
		val = emif_regs->NANDFSR;
		val &= 0xc00;
		i--;
	} while ((i > 0) && val);

	iserror = emif_regs->NANDFSR;
	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
	iserror = iserror >> 8;

	/*
	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
	 * corrected (five or more errors).  The number of errors
	 * calculated (err_num field) differs from the number of errors
	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
	 * correction complete (errors on bit 8 or 9).
	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
	 * complete (error exists).
	 */

	if (iserror == ECC_STATE_NO_ERR) {
		val = emif_regs->NANDERRVAL1;
		return 0;
	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
		val = emif_regs->NANDERRVAL1;
		return -1;
	}

	numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;

	/* Read the error address, error value and correct */
	for (i = 0; i < numerrors; i++) {
		if (i > 1) {
			erroraddress =
			    ((emif_regs->NANDERRADD2 >>
			      (16 * (i & 1))) & 0x3FF);
			erroraddress = ((512 + 7) - erroraddress);
			errorvalue =
			    ((emif_regs->NANDERRVAL2 >>
			      (16 * (i & 1))) & 0xFF);
		} else {
			erroraddress =
			    ((emif_regs->NANDERRADD1 >>
			      (16 * (i & 1))) & 0x3FF);
			erroraddress = ((512 + 7) - erroraddress);
			errorvalue =
			    ((emif_regs->NANDERRVAL1 >>
			      (16 * (i & 1))) & 0xFF);
		}
		/* xor the corrupt data with error value */
		if (erroraddress < 512)
			dat[erroraddress] ^= errorvalue;
	}

	return numerrors;
}
442
#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
443

444 445
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
446
	return emif_regs->NANDFSR & 0x1;
447 448 449 450
}

static void nand_flash_init(void)
{
451 452 453 454 455
	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
	 * Instead, have your board_init() set EMIF timings, based on its
	 * knowledge of the clocks and what devices are hooked up ... and
	 * don't even do that unless no UBL handled it.
	 */
456
#ifdef CONFIG_SOC_DM644X
457 458 459 460 461 462 463 464 465 466
	u_int32_t	acfg1 = 0x3ffffffc;

	/*------------------------------------------------------------------*
	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
	 *                                                                  *
	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
	 *                                                                  *
	 *------------------------------------------------------------------*/
	 acfg1 = 0
Wolfgang Denk's avatar
Wolfgang Denk committed
467 468 469 470 471 472 473 474 475 476 477
		| (0 << 31 )	/* selectStrobe */
		| (0 << 30 )	/* extWait */
		| (1 << 26 )	/* writeSetup	10 ns */
		| (3 << 20 )	/* writeStrobe	40 ns */
		| (1 << 17 )	/* writeHold	10 ns */
		| (1 << 13 )	/* readSetup	10 ns */
		| (5 << 7 )	/* readStrobe	60 ns */
		| (1 << 4 )	/* readHold	10 ns */
		| (3 << 2 )	/* turnAround	?? ns */
		| (0 << 0 )	/* asyncSize	8-bit bus */
		;
478

Thomas Lange's avatar
Thomas Lange committed
479 480 481
	emif_regs->AB1CR = acfg1; /* CS2 */

	emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */
482
#endif
483 484
}

485
void davinci_nand_init(struct nand_chip *nand)
486 487
{
	nand->chip_delay  = 0;
488
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
489
	nand->options	  |= NAND_USE_FLASH_BBT;
490
#endif
491
#ifdef CONFIG_SYS_NAND_HW_ECC
William Juul's avatar
William Juul committed
492
	nand->ecc.mode = NAND_ECC_HW;
493 494
	nand->ecc.size = 512;
	nand->ecc.bytes = 3;
495 496
	nand->ecc.calculate = nand_davinci_calculate_ecc;
	nand->ecc.correct  = nand_davinci_correct_data;
William Juul's avatar
William Juul committed
497
	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
498
#else
William Juul's avatar
William Juul committed
499
	nand->ecc.mode = NAND_ECC_SOFT;
500
#endif /* CONFIG_SYS_NAND_HW_ECC */
501 502 503 504 505 506 507 508 509
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
	nand->ecc.size = 512;
	nand->ecc.bytes = 10;
	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
	nand->ecc.correct = nand_davinci_4bit_correct_data;
	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
510
	/* Set address of hardware control function */
511
	nand->cmd_ctrl = nand_davinci_hwcontrol;
512 513 514 515

	nand->dev_ready = nand_davinci_dev_ready;

	nand_flash_init();
516
}
517

518 519 520 521 522 523
int board_nand_init(struct nand_chip *chip) __attribute__((weak));

int board_nand_init(struct nand_chip *chip)
{
	davinci_nand_init(chip);
	return 0;
524
}