ebi_onenand.c 4.59 KB
Newer Older
1 2 3
/*
 * (C) Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
 *
4
 * SPDX-License-Identifier:	GPL-2.0+
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
 */

#include <common.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include "vct.h"

#define BURST_SIZE_WORDS		4

static u16 ebi_nand_read_word(void __iomem *addr)
{
	reg_write(EBI_CPU_IO_ACCS(EBI_BASE), (EXT_DEVICE_CHANNEL_2 | (u32)addr));
	ebi_wait();

	return reg_read(EBI_IO_ACCS_DATA(EBI_BASE)) >> 16;
}

static void ebi_nand_write_word(u16 data, void __iomem * addr)
{
	ebi_wait();
	reg_write(EBI_IO_ACCS_DATA(EBI_BASE), (data << 16));
	reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
		  EXT_DEVICE_CHANNEL_2 | EBI_CPU_WRITE | (u32)addr);
	ebi_wait();
}

/*
 * EBI initialization for OneNAND FLASH access
 */
int ebi_init_onenand(void)
{
	reg_write(EBI_DEV1_CONFIG1(EBI_BASE), 0x83000);

	reg_write(EBI_DEV2_CONFIG1(EBI_BASE), 0x00403002);
	reg_write(EBI_DEV2_CONFIG2(EBI_BASE), 0x50);

	reg_write(EBI_DEV3_CONFIG1(EBI_BASE), 0x00403002);
	reg_write(EBI_DEV3_CONFIG2(EBI_BASE), 0x0); /* byte/word ordering */

	reg_write(EBI_DEV2_TIM1_RD1(EBI_BASE), 0x00504000);
	reg_write(EBI_DEV2_TIM1_RD2(EBI_BASE), 0x00001000);
	reg_write(EBI_DEV2_TIM1_WR1(EBI_BASE), 0x12002223);
	reg_write(EBI_DEV2_TIM1_WR2(EBI_BASE), 0x3FC02220);
	reg_write(EBI_DEV3_TIM1_RD1(EBI_BASE), 0x00504000);
	reg_write(EBI_DEV3_TIM1_RD2(EBI_BASE), 0x00001000);
	reg_write(EBI_DEV3_TIM1_WR1(EBI_BASE), 0x05001000);
	reg_write(EBI_DEV3_TIM1_WR2(EBI_BASE), 0x00010200);

	reg_write(EBI_DEV2_TIM_EXT(EBI_BASE), 0xFFF00000);
	reg_write(EBI_DEV2_EXT_ACC(EBI_BASE), 0x0FFFFFFF);

	reg_write(EBI_DEV3_TIM_EXT(EBI_BASE), 0xFFF00000);
	reg_write(EBI_DEV3_EXT_ACC(EBI_BASE), 0x0FFFFFFF);

	/* prepare DMA configuration for EBI */
	reg_write(EBI_DEV3_FIFO_CONFIG(EBI_BASE), 0x0101ff00);

	/* READ only no byte order change, TAG 1 used */
	reg_write(EBI_DEV3_DMA_CONFIG2(EBI_BASE), 0x00000004);

	reg_write(EBI_TAG1_SYS_ID(EBI_BASE), 0x0); /* SCC DMA channel 0 */
	reg_write(EBI_TAG2_SYS_ID(EBI_BASE), 0x1);
	reg_write(EBI_TAG3_SYS_ID(EBI_BASE), 0x2);
	reg_write(EBI_TAG4_SYS_ID(EBI_BASE), 0x3);

	return 0;
}

static void *memcpy_16_from_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u16 *d = dst;
	u16 *s = (u16 *)src;

	len >>= 1;
	while (len-- > 0)
		*d++ = ebi_nand_read_word(s++);

	return ret;
}

static void *memcpy_32_from_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u32 *d = (u32 *)dst;
	u32 s = (u32)src;
	u32 bytes_per_block = BURST_SIZE_WORDS * sizeof(int);
	u32 n_blocks = len / bytes_per_block;
	u32 block = 0;
	u32 burst_word;

	for (block = 0; block < n_blocks; block++) {
		/* Trigger read channel 3 */
		reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
			  (EXT_DEVICE_CHANNEL_3 | (s + (block * bytes_per_block))));
		/* Poll status to see whether read has finished */
		ebi_wait();

		/* Squirrel the data away in a safe place */
		for (burst_word = 0; burst_word < BURST_SIZE_WORDS; burst_word++)
			*d++ = reg_read(EBI_IO_ACCS_DATA(EBI_BASE));
	}

	return ret;
}

static void *memcpy_16_to_onenand(void *dst, const void *src, unsigned int len)
{
	void *ret = dst;
	u16 *d = dst;
	u16 *s = (u16 *)src;

	len >>= 1;
	while (len-- > 0)
		ebi_nand_write_word(*s++, d++);

	return ret;
}

static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
		if (area == ONENAND_DATARAM)
			return mtd->writesize;
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

static int ebi_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
			      unsigned char *buffer, int offset,
			      size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;
	bufferram += onenand_bufferram_offset(mtd, area);

	if (count < 4)
		memcpy_16_from_onenand(buffer, bufferram + offset, count);
	else
		memcpy_32_from_onenand(buffer, bufferram + offset, count);

	return 0;
}

static int ebi_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
			       const unsigned char *buffer, int offset,
			       size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;
	bufferram += onenand_bufferram_offset(mtd, area);

	memcpy_16_to_onenand(bufferram + offset, buffer, count);

	return 0;
}

void onenand_board_init(struct mtd_info *mtd)
{
	struct onenand_chip *chip = mtd->priv;

	/*
	 * Insert board specific OneNAND access functions
	 */
	chip->read_word = ebi_nand_read_word;
	chip->write_word = ebi_nand_write_word;

	chip->read_bufferram = ebi_read_bufferram;
	chip->write_bufferram = ebi_write_bufferram;
}