Commit 6ae08ae3 authored by Daniel Borkmann's avatar Daniel Borkmann Committed by Alexei Starovoitov
Browse files

bpf: Add probe_read_{user, kernel} and probe_read_{user, kernel}_str helpers

The current bpf_probe_read() and bpf_probe_read_str() helpers are broken
in that they assume they can be used for probing memory access for kernel
space addresses /as well as/ user space addresses.

However, plain use of probe_kernel_read() for both cases will attempt to
always access kernel space address space given access is performed under
KERNEL_DS and some archs in-fact have overlapping address spaces where a
kernel pointer and user pointer would have the /same/ address value and
therefore accessing application memory via bpf_probe_read{,_str}() would
read garbage values.

Lets fix BPF side by making use of recently added 3d708182 ("uaccess:
Add non-pagefault user-space read functions"). Unfortunately, the only way
to fix this status quo is to add dedicated bpf_probe_read_{user,kernel}()
and bpf_probe_read_{user,kernel}_str() helpers. The bpf_probe_read{,_str}()
helpers are kept as-is to retain their current behavior.

The two *_user() variants attempt the access always under USER_DS set, the
two *_kernel() variants will -EFAULT when accessing user memory if the
underlying architecture has non-overlapping address ranges, also avoiding
throwing the kernel warning via 00c42373 ("x86-64: add warning for
non-canonical user access address dereferences").

Fixes: a5e8c070 ("bpf: add bpf_probe_read_str helper")
Fixes: 2541517c

 ("tracing, perf: Implement BPF programs attached to kprobes")
Signed-off-by: default avatarDaniel Borkmann <daniel@iogearbox.net>
Signed-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
Acked-by: default avatarAndrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/796ee46e948bc808d54891a1108435f8652c6ca4.1572649915.git.daniel@iogearbox.net
parent eb1b6688
......@@ -563,10 +563,13 @@ union bpf_attr {
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read(void *dst, u32 size, const void *src)
* int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
* Description
* For tracing programs, safely attempt to read *size* bytes from
* address *src* and store the data in *dst*.
* kernel space address *unsafe_ptr* and store the data in *dst*.
*
* Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
* instead.
* Return
* 0 on success, or a negative error in case of failure.
*
......@@ -1428,45 +1431,14 @@ union bpf_attr {
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
* int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe address
* *unsafe_ptr* to *dst*. The *size* should include the
* terminating NUL byte. In case the string length is smaller than
* *size*, the target is not padded with further NUL bytes. If the
* string length is larger than *size*, just *size*-1 bytes are
* copied and the last byte is set to NUL.
*
* On success, the length of the copied string is returned. This
* makes this helper useful in tracing programs for reading
* strings, and more importantly to get its length at runtime. See
* the following snippet:
* Copy a NUL terminated string from an unsafe kernel address
* *unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
* more details.
*
* ::
*
* SEC("kprobe/sys_open")
* void bpf_sys_open(struct pt_regs *ctx)
* {
* char buf[PATHLEN]; // PATHLEN is defined to 256
* int res = bpf_probe_read_str(buf, sizeof(buf),
* ctx->di);
*
* // Consume buf, for example push it to
* // userspace via bpf_perf_event_output(); we
* // can use res (the string length) as event
* // size, after checking its boundaries.
* }
*
* In comparison, using **bpf_probe_read()** helper here instead
* to read the string would require to estimate the length at
* compile time, and would often result in copying more memory
* than necessary.
*
* Another useful use case is when parsing individual process
* arguments or individual environment variables navigating
* *current*\ **->mm->arg_start** and *current*\
* **->mm->env_start**: using this helper and the return value,
* one can quickly iterate at the right offset of the memory area.
* Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
* instead.
* Return
* On success, the strictly positive length of the string,
* including the trailing NUL character. On error, a negative
......@@ -2777,6 +2749,72 @@ union bpf_attr {
* restricted to raw_tracepoint bpf programs.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Safely attempt to read *size* bytes from user space address
* *unsafe_ptr* and store the data in *dst*.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Safely attempt to read *size* bytes from kernel space address
* *unsafe_ptr* and store the data in *dst*.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe user address
* *unsafe_ptr* to *dst*. The *size* should include the
* terminating NUL byte. In case the string length is smaller than
* *size*, the target is not padded with further NUL bytes. If the
* string length is larger than *size*, just *size*-1 bytes are
* copied and the last byte is set to NUL.
*
* On success, the length of the copied string is returned. This
* makes this helper useful in tracing programs for reading
* strings, and more importantly to get its length at runtime. See
* the following snippet:
*
* ::
*
* SEC("kprobe/sys_open")
* void bpf_sys_open(struct pt_regs *ctx)
* {
* char buf[PATHLEN]; // PATHLEN is defined to 256
* int res = bpf_probe_read_user_str(buf, sizeof(buf),
* ctx->di);
*
* // Consume buf, for example push it to
* // userspace via bpf_perf_event_output(); we
* // can use res (the string length) as event
* // size, after checking its boundaries.
* }
*
* In comparison, using **bpf_probe_read_user()** helper here
* instead to read the string would require to estimate the length
* at compile time, and would often result in copying more memory
* than necessary.
*
* Another useful use case is when parsing individual process
* arguments or individual environment variables navigating
* *current*\ **->mm->arg_start** and *current*\
* **->mm->env_start**: using this helper and the return value,
* one can quickly iterate at the right offset of the memory area.
* Return
* On success, the strictly positive length of the string,
* including the trailing NUL character. On error, a negative
* value.
*
* int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
* to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
* Return
* On success, the strictly positive length of the string, including
* the trailing NUL character. On error, a negative value.
*/
#define __BPF_FUNC_MAPPER(FN) \
FN(unspec), \
......@@ -2890,7 +2928,11 @@ union bpf_attr {
FN(sk_storage_delete), \
FN(send_signal), \
FN(tcp_gen_syncookie), \
FN(skb_output),
FN(skb_output), \
FN(probe_read_user), \
FN(probe_read_kernel), \
FN(probe_read_user_str), \
FN(probe_read_kernel_str),
/* integer value in 'imm' field of BPF_CALL instruction selects which helper
* function eBPF program intends to call
......
......@@ -138,24 +138,140 @@ static const struct bpf_func_proto bpf_override_return_proto = {
};
#endif
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
const void __user *, unsafe_ptr)
{
int ret;
int ret = probe_user_read(dst, unsafe_ptr, size);
ret = security_locked_down(LOCKDOWN_BPF_READ);
if (ret < 0)
goto out;
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_user_proto = {
.func = bpf_probe_read_user,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
const void __user *, unsafe_ptr)
{
int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
.func = bpf_probe_read_user_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
ret = probe_kernel_read(dst, unsafe_ptr, size);
static __always_inline int
bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
const bool compat)
{
int ret = security_locked_down(LOCKDOWN_BPF_READ);
if (unlikely(ret < 0))
goto out;
ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
probe_kernel_read_strict(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
out:
memset(dst, 0, size);
return ret;
}
BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
}
static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
.func = bpf_probe_read_kernel,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
}
static const struct bpf_func_proto bpf_probe_read_compat_proto = {
.func = bpf_probe_read_compat,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
static __always_inline int
bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
const bool compat)
{
int ret = security_locked_down(LOCKDOWN_BPF_READ);
if (unlikely(ret < 0))
goto out;
/*
* The strncpy_from_unsafe_*() call will likely not fill the entire
* buffer, but that's okay in this circumstance as we're probing
* arbitrary memory anyway similar to bpf_probe_read_*() and might
* as well probe the stack. Thus, memory is explicitly cleared
* only in error case, so that improper users ignoring return
* code altogether don't copy garbage; otherwise length of string
* is returned that can be used for bpf_perf_event_output() et al.
*/
ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
out:
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_proto = {
.func = bpf_probe_read,
BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
}
static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
.func = bpf_probe_read_kernel_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
}
static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
.func = bpf_probe_read_compat_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
......@@ -583,41 +699,6 @@ static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
int ret;
ret = security_locked_down(LOCKDOWN_BPF_READ);
if (ret < 0)
goto out;
/*
* The strncpy_from_unsafe() call will likely not fill the entire
* buffer, but that's okay in this circumstance as we're probing
* arbitrary memory anyway similar to bpf_probe_read() and might
* as well probe the stack. Thus, memory is explicitly cleared
* only in error case, so that improper users ignoring return
* code altogether don't copy garbage; otherwise length of string
* is returned that can be used for bpf_perf_event_output() et al.
*/
ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
out:
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_str_proto = {
.func = bpf_probe_read_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
struct send_signal_irq_work {
struct irq_work irq_work;
struct task_struct *task;
......@@ -697,8 +778,6 @@ tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_map_pop_elem_proto;
case BPF_FUNC_map_peek_elem:
return &bpf_map_peek_elem_proto;
case BPF_FUNC_probe_read:
return &bpf_probe_read_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_tail_call:
......@@ -725,8 +804,18 @@ tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_current_task_under_cgroup_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_probe_read_user:
return &bpf_probe_read_user_proto;
case BPF_FUNC_probe_read_kernel:
return &bpf_probe_read_kernel_proto;
case BPF_FUNC_probe_read:
return &bpf_probe_read_compat_proto;
case BPF_FUNC_probe_read_user_str:
return &bpf_probe_read_user_str_proto;
case BPF_FUNC_probe_read_kernel_str:
return &bpf_probe_read_kernel_str_proto;
case BPF_FUNC_probe_read_str:
return &bpf_probe_read_str_proto;
return &bpf_probe_read_compat_str_proto;
#ifdef CONFIG_CGROUPS
case BPF_FUNC_get_current_cgroup_id:
return &bpf_get_current_cgroup_id_proto;
......
......@@ -563,10 +563,13 @@ union bpf_attr {
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read(void *dst, u32 size, const void *src)
* int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
* Description
* For tracing programs, safely attempt to read *size* bytes from
* address *src* and store the data in *dst*.
* kernel space address *unsafe_ptr* and store the data in *dst*.
*
* Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
* instead.
* Return
* 0 on success, or a negative error in case of failure.
*
......@@ -1428,45 +1431,14 @@ union bpf_attr {
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
* int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe address
* *unsafe_ptr* to *dst*. The *size* should include the
* terminating NUL byte. In case the string length is smaller than
* *size*, the target is not padded with further NUL bytes. If the
* string length is larger than *size*, just *size*-1 bytes are
* copied and the last byte is set to NUL.
*
* On success, the length of the copied string is returned. This
* makes this helper useful in tracing programs for reading
* strings, and more importantly to get its length at runtime. See
* the following snippet:
* Copy a NUL terminated string from an unsafe kernel address
* *unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
* more details.
*
* ::
*
* SEC("kprobe/sys_open")
* void bpf_sys_open(struct pt_regs *ctx)
* {
* char buf[PATHLEN]; // PATHLEN is defined to 256
* int res = bpf_probe_read_str(buf, sizeof(buf),
* ctx->di);
*
* // Consume buf, for example push it to
* // userspace via bpf_perf_event_output(); we
* // can use res (the string length) as event
* // size, after checking its boundaries.
* }
*
* In comparison, using **bpf_probe_read()** helper here instead
* to read the string would require to estimate the length at
* compile time, and would often result in copying more memory
* than necessary.
*
* Another useful use case is when parsing individual process
* arguments or individual environment variables navigating
* *current*\ **->mm->arg_start** and *current*\
* **->mm->env_start**: using this helper and the return value,
* one can quickly iterate at the right offset of the memory area.
* Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
* instead.
* Return
* On success, the strictly positive length of the string,
* including the trailing NUL character. On error, a negative
......@@ -2777,6 +2749,72 @@ union bpf_attr {
* restricted to raw_tracepoint bpf programs.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Safely attempt to read *size* bytes from user space address
* *unsafe_ptr* and store the data in *dst*.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Safely attempt to read *size* bytes from kernel space address
* *unsafe_ptr* and store the data in *dst*.
* Return
* 0 on success, or a negative error in case of failure.
*
* int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe user address
* *unsafe_ptr* to *dst*. The *size* should include the
* terminating NUL byte. In case the string length is smaller than
* *size*, the target is not padded with further NUL bytes. If the
* string length is larger than *size*, just *size*-1 bytes are
* copied and the last byte is set to NUL.
*
* On success, the length of the copied string is returned. This
* makes this helper useful in tracing programs for reading
* strings, and more importantly to get its length at runtime. See
* the following snippet:
*
* ::
*
* SEC("kprobe/sys_open")
* void bpf_sys_open(struct pt_regs *ctx)
* {
* char buf[PATHLEN]; // PATHLEN is defined to 256
* int res = bpf_probe_read_user_str(buf, sizeof(buf),
* ctx->di);
*
* // Consume buf, for example push it to
* // userspace via bpf_perf_event_output(); we
* // can use res (the string length) as event
* // size, after checking its boundaries.
* }
*
* In comparison, using **bpf_probe_read_user()** helper here
* instead to read the string would require to estimate the length
* at compile time, and would often result in copying more memory
* than necessary.
*
* Another useful use case is when parsing individual process
* arguments or individual environment variables navigating
* *current*\ **->mm->arg_start** and *current*\
* **->mm->env_start**: using this helper and the return value,
* one can quickly iterate at the right offset of the memory area.
* Return
* On success, the strictly positive length of the string,
* including the trailing NUL character. On error, a negative
* value.
*
* int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
* Description
* Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
* to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
* Return
* On success, the strictly positive length of the string, including
* the trailing NUL character. On error, a negative value.
*/
#define __BPF_FUNC_MAPPER(FN) \
FN(unspec), \
......@@ -2890,7 +2928,11 @@ union bpf_attr {
FN(sk_storage_delete), \
FN(send_signal), \
FN(tcp_gen_syncookie), \
FN(skb_output),
FN(skb_output), \
FN(probe_read_user), \
FN(probe_read_kernel), \
FN(probe_read_user_str), \
FN(probe_read_kernel_str),
/* integer value in 'imm' field of BPF_CALL instruction selects which helper
* function eBPF program intends to call
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment