altpciechdma.c 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * Driver for Altera PCIe core chaining DMA reference design.
 *
 * Copyright (C) 2008 Leon Woestenberg  <leon.woestenberg@axon.tv>
 * Copyright (C) 2008 Nickolas Heppermann  <heppermannwdt@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *
 * Rationale: This driver exercises the chaining DMA read and write engine
 * in the reference design. It is meant as a complementary reference
 * driver that can be used for testing early designs as well as a basis to
 * write your custom driver.
 *
 * Status: Test results from Leon Woestenberg  <leon.woestenberg@axon.tv>:
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
 *
 * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
 * loopback test had reproducable compare errors. I assume a change
 * in the compiler or reference design, but could not find evidence nor
 * documentation on a change or fix in that direction.
 *
 * The reference design does not have readable locations and thus a
 * dummy read, used to flush PCI posted writes, cannot be performed.
 *
 */

#include <linux/kernel.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/pci.h>


/* by default do not build the character device interface */
/* XXX It is non-functional yet */
#ifndef ALTPCIECHDMA_CDEV
#  define ALTPCIECHDMA_CDEV 0
#endif

/* build the character device interface? */
#if ALTPCIECHDMA_CDEV
#  define MAX_CHDMA_SIZE (8 * 1024 * 1024)
#  include "mapper_user_to_sg.h"
#endif

/** driver name, mimicks Altera naming of the reference design */
#define DRV_NAME "altpciechdma"
/** number of BARs on the device */
#define APE_BAR_NUM (6)
/** BAR number where the RCSLAVE memory sits */
#define APE_BAR_RCSLAVE (0)
/** BAR number where the Descriptor Header sits */
#define APE_BAR_HEADER (2)

/** maximum size in bytes of the descriptor table, chdma logic limit */
#define APE_CHDMA_TABLE_SIZE (4096)
/* single transfer must not exceed 255 table entries. worst case this can be
 * achieved by 255 scattered pages, with only a single byte in the head and
 * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
 */
#define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)

/**
 * Specifies those BARs to be mapped and the length of each mapping.
 *
 * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
 * If the actual BAR length is less, this is considered an error; then
 * reconfigure your PCIe core.
 *
 * @see ug_pci_express 8.0, table 7-2 at page 7-13.
 */
static const unsigned long bar_min_len[APE_BAR_NUM] =
	{ 32768, 0, 256, 0, 32768, 0 };

/**
 * Descriptor Header, controls the DMA read engine or write engine.
 *
 * The descriptor header is the main data structure for starting DMA transfers.
 *
 * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
 * It references a descriptor table which exists in Root Complex (PC) memory.
 * Writing the rclast field starts the DMA operation, thus all other structures
 * and fields must be setup before doing so.
 *
 * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
 * @note This header must be written in four 32-bit (PCI DWORD) writes.
 */
struct ape_chdma_header {
	/**
	 * w0 consists of two 16-bit fields:
	 * lsb u16 number; number of descriptors in ape_chdma_table
	 * msb u16 control; global control flags
	 */
	u32 w0;
	/* bus address to ape_chdma_table in Root Complex memory */
	u32 bdt_addr_h;
	u32 bdt_addr_l;
	/**
	 * w3 consists of two 16-bit fields:
	 * - lsb u16 rclast; last descriptor number available in Root Complex
	 *    - zero (0) means the first descriptor is ready,
	 *    - one (1) means two descriptors are ready, etc.
	 * - msb u16 reserved;
	 *
	 * @note writing to this memory location starts the DMA operation!
	 */
	u32 w3;
} __attribute__ ((packed));

/**
 * Descriptor Entry, describing a (non-scattered) single memory block transfer.
 *
 * There is one descriptor for each memory block involved in the transfer, a
 * block being a contiguous address range on the bus.
 *
 * Multiple descriptors are chained by means of the ape_chdma_table data
 * structure.
 *
 * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
 */
struct ape_chdma_desc {
	/**
	 * w0 consists of two 16-bit fields:
	 * number of DWORDS to transfer
	 * - lsb u16 length;
	 * global control
	 * - msb u16 control;
	 */
	u32 w0;
	/* address of memory in the End Point */
	u32 ep_addr;
	/* bus address of source or destination memory in the Root Complex */
	u32 rc_addr_h;
	u32 rc_addr_l;
} __attribute__ ((packed));

/**
 * Descriptor Table, an array of descriptors describing a chained transfer.
 *
 * An array of descriptors, preceded by workspace for the End Point.
 * It exists in Root Complex memory.
 *
 * The End Point can update its last completed descriptor number in the
 * eplast field if requested by setting the EPLAST_ENA bit either
 * globally in the header's or locally in any descriptor's control field.
 *
 * @note this structure may not exceed 4096 bytes. This results in a
 * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
 *
 * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
 */
struct ape_chdma_table {
	/* workspace 0x00-0x0b, reserved */
	u32 reserved1[3];
	/* workspace 0x0c-0x0f, last descriptor handled by End Point */
	u32 w3;
	/* the actual array of descriptors
    * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
    */
	struct ape_chdma_desc desc[255];
} __attribute__ ((packed));

/**
 * Altera PCI Express ('ape') board specific book keeping data
 *
 * Keeps state of the PCIe core and the Chaining DMA controller
 * application.
 */
struct ape_dev {
	/** the kernel pci device data structure provided by probe() */
	struct pci_dev *pci_dev;
	/**
	 * kernel virtual address of the mapped BAR memory and IO regions of
	 * the End Point. Used by map_bars()/unmap_bars().
	 */
	void * __iomem bar[APE_BAR_NUM];
	/** kernel virtual address for Descriptor Table in Root Complex memory */
	struct ape_chdma_table *table_virt;
	/**
	 * bus address for the Descriptor Table in Root Complex memory, in
	 * CPU-native endianess
	 */
	dma_addr_t table_bus;
	/* if the device regions could not be allocated, assume and remember it
	 * is in use by another driver; this driver must not disable the device.
	 */
	int in_use;
	/* whether this driver enabled msi for the device */
	int msi_enabled;
	/* whether this driver could obtain the regions */
	int got_regions;
215
	/* irq line successfully requested by this driver, -1 otherwise */
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	int irq_line;
	/* board revision */
	u8 revision;
	/* interrupt count, incremented by the interrupt handler */
	int irq_count;
#if ALTPCIECHDMA_CDEV
	/* character device */
	dev_t cdevno;
	struct cdev cdev;
	/* user space scatter gather mapper */
	struct sg_mapping_t *sgm;
#endif
};

/**
 * Using the subsystem vendor id and subsystem id, it is possible to
 * distinguish between different cards bases around the same
 * (third-party) logic core.
 *
 * Default Altera vendor and device ID's, and some (non-reserved)
 * ID's are now used here that are used amongst the testers/developers.
 */
static const struct pci_device_id ids[] = {
	{ PCI_DEVICE(0x1172, 0xE001), },
	{ PCI_DEVICE(0x2071, 0x2071), },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, ids);

#if ALTPCIECHDMA_CDEV
/* prototypes for character device */
static int sg_init(struct ape_dev *ape);
static void sg_exit(struct ape_dev *ape);
#endif

/**
 * altpciechdma_isr() - Interrupt handler
 *
 */
static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
{
	struct ape_dev *ape = (struct ape_dev *)dev_id;
	if (!ape)
		return IRQ_NONE;
	ape->irq_count++;
	return IRQ_HANDLED;
}

static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		if (bar_start) {
			unsigned long bar_end = pci_resource_end(dev, i);
			unsigned long bar_flags = pci_resource_flags(dev, i);
			printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
			  i, bar_start, bar_end, bar_flags);
		}
	}
	return 0;
}

/**
 * Unmap the BAR regions that had been mapped earlier using map_bars()
 */
static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
	  /* is this BAR mapped? */
		if (ape->bar[i]) {
			/* unmap BAR */
			pci_iounmap(dev, ape->bar[i]);
			ape->bar[i] = NULL;
		}
	}
}

/**
 * Map the device memory regions into kernel virtual address space after
 * verifying their sizes respect the minimum sizes needed, given by the
 * bar_min_len[] array.
 */
static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int rc;
	int i;
	/* iterate through all the BARs */
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		unsigned long bar_end = pci_resource_end(dev, i);
		unsigned long bar_length = bar_end - bar_start + 1;
		ape->bar[i] = NULL;
		/* do not map, and skip, BARs with length 0 */
		if (!bar_min_len[i])
			continue;
		/* do not map BARs with address 0 */
		if (!bar_start || !bar_end) {
315
			printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
316 317 318 319 320 321
			rc = -1;
			goto fail;
		}
		bar_length = bar_end - bar_start + 1;
		/* BAR length is less than driver requires? */
		if (bar_length < bar_min_len[i]) {
322 323 324
			printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
			"requires at least %lu bytes\n",
			i, bar_length, bar_min_len[i]);
325 326 327 328 329 330 331 332 333 334 335
			rc = -1;
			goto fail;
		}
		/* map the device memory or IO region into kernel virtual
		 * address space */
		ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
		if (!ape->bar[i]) {
			printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
			rc = -1;
			goto fail;
		}
336 337
		printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
		ape->bar[i], bar_min_len[i], bar_length);
338
	}
339
	/* successfully mapped all required BAR regions */
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	rc = 0;
	goto success;
fail:
	/* unmap any BARs that we did map */
	unmap_bars(ape, dev);
success:
	return rc;
}

#if 0 /* not yet implemented fully FIXME add opcode */
static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
{
	u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
	u32 result = 0;
	/** this number is assumed to be different each time this test runs */
	u32 seed = (u32)jiffies;
	u32 value = seed;
	int i;

	/* write loop */
	value = seed;
	for (i = 1024; i < 32768 / 4 ; i++) {
		printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
			(u32)value, (void *)rcslave_mem + i);
		iowrite32(value, rcslave_mem + i);
		value++;
	}
	/* read-back loop */
	value = seed;
	for (i = 1024; i < 32768 / 4; i++) {
		result = ioread32(rcslave_mem + i);
		if (result != value) {
			printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
				(u32)value, (void *)rcslave_mem + i, (u32)result);
			break;
		}
		value++;
	}
}
#endif

/* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
#define pci_dma_h(addr) ((addr >> 16) >> 16)
/* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
#define pci_dma_l(addr) (addr & 0xffffffffUL)

/* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
 *
 * @desc pointer to descriptor to be filled
 * @addr root complex address
 * @ep_addr end point address
 * @len number of bytes, must be a multiple of 4.
 */
static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
{
  BUG_ON(len & 3);
	desc->w0 = cpu_to_le32(len / 4);
	desc->ep_addr = cpu_to_le32(ep_addr);
	desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
	desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
}

402
#if ALTPCIECHDMA_CDEV
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
 *
 * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
 *
 * @sgl scatterlist.
 * @nents Number of entries in the scatterlist.
 * @first Start index in the scatterlist sgm->sgl.
 * @ep_addr End Point address for the scatter/gather transfer.
 * @desc pointer to first descriptor
 *
 * Returns Number of entries in the table on success, -1 on error.
 */
static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
{
	int i = first, j = 0;
	/* inspect first entry */
	dma_addr_t addr = sg_dma_address(&sgl[i]);
	unsigned int len = sg_dma_len(&sgl[i]);
	/* contiguous block */
	dma_addr_t cont_addr = addr;
	unsigned int cont_len = len;
	/* iterate over remaining entries */
	for (; j < 25 && i < nents - 1; i++) {
		/* bus address of next entry i + 1 */
		dma_addr_t next = sg_dma_address(&sgl[i + 1]);
		/* length of this entry i */
		len = sg_dma_len(&sgl[i]);
431 432
		printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
			(unsigned long long)addr, len);
433 434 435
		/* entry i + 1 is non-contiguous with entry i? */
		if (next != addr + len) {
			/* TODO create entry here (we could overwrite i) */
436 437
			printk(KERN_DEBUG "%4d: cont_addr=0x%Lx cont_len=0x%08x\n", j,
				(unsigned long long)cont_addr, cont_len);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
			/* set descriptor for contiguous transfer */
			ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
			/* next end point memory address */
			ep_addr += cont_len;
			/* start new contiguous block */
			cont_addr = next;
			cont_len = 0;
			j++;
		}
		/* add entry i + 1 to current contiguous block */
		cont_len += len;
		/* goto entry i + 1 */
		addr = next;
	}
	/* TODO create entry here  (we could overwrite i) */
453 454 455 456
	printk(KERN_DEBUG "%04d: addr=0x%Lx length=0x%08x\n", i,
		(unsigned long long)addr, len);
	printk(KERN_DEBUG "%4d: cont_addr=0x%Lx length=0x%08x\n", j,
		(unsigned long long)cont_addr, cont_len);
457 458 459
	j++;
	return j;
}
460
#endif
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

/* compare buffers */
static inline int compare(u32 *p, u32 *q, int len)
{
	int result = -1;
	int fail = 0;
	int i;
	for (i = 0; i < len / 4; i++) {
		if (*p == *q) {
			/* every so many u32 words, show equals */
			if ((i & 255) == 0)
				printk(KERN_DEBUG "[%p] = 0x%08x    [%p] = 0x%08x\n", p, *p, q, *q);
		} else {
			fail++;
			/* show the first few miscompares */
476 477 478 479 480 481
			if (fail < 10)
				printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
				/* but stop after a while */
			else if (fail == 10)
				printk(KERN_DEBUG "---more errors follow! not printed---\n");
			else
482
				/* stop compare after this many errors */
483
			break;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		}
		p++;
		q++;
	}
	if (!fail)
		result = 0;
	return result;
}

/* dma_test() - Perform DMA loop back test to end point and back to root complex.
 *
 * Allocate a cache-coherent buffer in host memory, consisting of four pages.
 *
 * Fill the four memory pages such that each 32-bit word contains its own address.
 *
 * Now perform a loop back test, have the end point device copy the first buffer
 * half to end point memory, then have it copy back into the second half.
 *
 *   Create a descriptor table to copy the first buffer half into End Point
 *   memory. Instruct the End Point to do a DMA read using that table.
 *
 *   Create a descriptor table to copy End Point memory to the second buffer
 *   half. Instruct the End Point to do a DMA write using that table.
 *
 * Compare results, fail or pass.
 *
 */
static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
{
	/* test result; guilty until proven innocent */
	int result = -1;
	/* the DMA read header sits at address 0x00 of the DMA engine BAR */
	struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
	/* the write DMA header sits after the read header at address 0x10 */
	struct ape_chdma_header *read_header = write_header + 1;
	/* virtual address of the allocated buffer */
	u8 *buffer_virt = 0;
	/* bus address of the allocated buffer */
	dma_addr_t buffer_bus = 0;
	int i, n = 0, irq_count;

	/* temporary value used to construct 32-bit data words */
	u32 w;

	printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
	printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
	printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
	printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
	printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
	printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);

	if (!write_header || !read_header || !ape->table_virt)
536
		goto fail;
537 538

	/* allocate and map coherently-cached memory for a DMA-able buffer */
539
	/* @see Documentation/PCI/PCI-DMA-mapping.txt, near line 318 */
540 541 542 543 544
	buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
	if (!buffer_virt) {
		printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
		goto fail;
	}
545 546
	printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = %p, bus address = 0x%016llx).\n",
	       buffer_virt, (u64)buffer_bus);
547 548 549 550 551 552

	/* fill first half of buffer with its virtual address as data */
	for (i = 0; i < 4 * PAGE_SIZE; i += 4)
#if 0
		*(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
#else
553
		*(u32 *)(buffer_virt + i) = (u32)(unsigned long)(buffer_virt + i);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
#endif
#if 0
  compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
#endif

#if 0
	/* fill second half of buffer with zeroes */
	for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
		*(u32 *)(buffer_virt + i) = 0;
#endif

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* fill in first descriptor */
	n = 0;
	/* read 8192 bytes from RC buffer to EP address 4096 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
#if 1
573
	for (i = 0; i < 255; i++)
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
	/* index of last descriptor */
	n = i - 1;
#endif
#if 0
	/* fill in next descriptor */
	n++;
	/* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
#endif

#if 1
	/* enable MSI after the last descriptor is completed */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif
	/* set available number of descriptors in table */
	w = (u32)(n + 1);
	w |= (1UL << 18)/*global EPLAST_EN*/;
#if 0
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
	iowrite32(w, &read_header->w0);

	/* write table address (higher 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
	iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);

	/* write table address (lower 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
	iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);

	/* memory write barrier */
	wmb();
	printk(KERN_DEBUG "Flush posted writes\n");
	/** FIXME Add dummy read to flush posted writes but need a readable location! */
#if 0
	(void)ioread32();
#endif

	/* remember IRQ count before the transfer */
	irq_count = ape->irq_count;
	/* write number of descriptors - this starts the DMA */
	printk(KERN_DEBUG "\nStart DMA read\n");
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
	iowrite32(n, &read_header->w3);
	printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	printk(KERN_DEBUG "POLL FOR READ:\n");
	/* poll for chain completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
654
			/* print IRQ count before the transfer */
655 656 657 658 659 660 661 662 663 664 665 666 667
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* setup first descriptor */
	n = 0;
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
#if 1
668
	for (i = 0; i < 255; i++)
669
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	/* index of last descriptor */
	n = i - 1;
#endif
#if 1 /* test variable, make a module option later */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif

	/* set number of available descriptors in the table */
	w = (u32)(n + 1);
	/* enable updates of eplast for each descriptor completion */
	w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
698
#if 0   /* test variable, make a module option later */
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	/* enable MSI for each descriptor completion */
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	iowrite32(w, &write_header->w0);
	iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
	iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);

	/** memory write barrier and flush posted writes */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	irq_count = ape->irq_count;

	printk(KERN_DEBUG "\nStart DMA write\n");
	iowrite32(n, &write_header->w3);

	/** memory write barrier */
	wmb();
	/** dummy read to flush posted writes */
722
	/* (void) ioread32(); */
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

	printk(KERN_DEBUG "POLL FOR WRITE:\n");
	/* poll for completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
			/* print IRQ count before the transfer */
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}
	/* soft-reset DMA write engine */
	iowrite32(0x0000ffffUL, &write_header->w0);
	/* soft-reset DMA read engine */
	iowrite32(0x0000ffffUL, &read_header->w0);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	/* compare first half of buffer with second half, should be identical */
	result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
	printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");

	pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
fail:
	printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
	return result;
}

/* Called when the PCI sub system thinks we can control the given device.
 * Inspect if we can support the device and if so take control of it.
 *
 * Return 0 when we have taken control of the given device.
 *
 * - allocate board specific bookkeeping
 * - allocate coherently-mapped memory for the descriptor table
 * - enable the board
 * - verify board revision
 * - request regions
 * - query DMA mask
 * - obtain and request irq
 * - map regions into kernel address space
 */
static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int rc = 0;
	struct ape_dev *ape = NULL;
	u8 irq_pin, irq_line;
	printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);

	/* allocate memory for per-board book keeping */
	ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
	if (!ape) {
		printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
		goto err_ape;
	}
	ape->pci_dev = dev;
788
	dev_set_drvdata(&dev->dev, ape);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);

	printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
		(int)sizeof(struct ape_chdma_table));
	/* the reference design has a size restriction on the table size */
	BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);

	/* allocate and map coherently-cached memory for a descriptor table */
	/* @see LDD3 page 446 */
	ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
		APE_CHDMA_TABLE_SIZE, &ape->table_bus);
	/* could not allocate table? */
	if (!ape->table_virt) {
		printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
		goto err_table;
	}

806 807
	printk(KERN_DEBUG "table_virt = %p, table_bus = 0x%16llx.\n",
		ape->table_virt, (u64)ape->table_bus);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	/* enable device */
	rc = pci_enable_device(dev);
	if (rc) {
		printk(KERN_DEBUG "pci_enable_device() failed\n");
		goto err_enable;
	}

	/* enable bus master capability on device */
	pci_set_master(dev);
	/* enable message signaled interrupts */
	rc = pci_enable_msi(dev);
	/* could not use MSI? */
	if (rc) {
		/* resort to legacy interrupts */
		printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
		ape->msi_enabled = 0;
	/* MSI enabled, remember for cleanup */
	} else {
		printk(KERN_DEBUG "Enabled MSI interrupting.\n");
		ape->msi_enabled = 1;
	}

	pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
#if 0 /* example */
	/* (for example) this driver does not support revision 0x42 */
    if (ape->revision == 0x42) {
		printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
		rc = -ENODEV;
		goto err_rev;
	}
#endif
	/** XXX check for native or legacy PCIe endpoint? */

	rc = pci_request_regions(dev, DRV_NAME);
	/* could not request all regions? */
	if (rc) {
		/* assume device is in use (and do not disable it later!) */
		ape->in_use = 1;
		goto err_regions;
	}
	ape->got_regions = 1;

851
#if 1   /* @todo For now, disable 64-bit, because I do not understand the implications (DAC!) */
852
	/* query for DMA transfer */
853
	/* @see Documentation/PCI/PCI-DMA-mapping.txt */
854 855
	if (!pci_set_dma_mask(dev, DMA_BIT_MASK(64))) {
		pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(64));
856 857 858 859
		/* use 64-bit DMA */
		printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
	} else
#endif
860
	if (!pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
861
		printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
862
		pci_set_consistent_dma_mask(dev, DMA_BIT_MASK(32));
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
		/* use 32-bit DMA */
		printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
	} else {
		printk(KERN_DEBUG "No suitable DMA possible.\n");
		/** @todo Choose proper error return code */
		rc = -1;
		goto err_mask;
	}

	rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
	/* could not read? */
	if (rc)
		goto err_irq;
	printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);

	/* @see LDD3, page 318 */
	rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
	/* could not read? */
	if (rc) {
		printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
		goto err_irq;
	}
	printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
#if 1
	irq_line = dev->irq;
	/* @see LDD3, page 259 */
	rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
	if (rc) {
		printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
		ape->irq_line = -1;
		goto err_irq;
	}
	/* remember which irq we allocated */
	ape->irq_line = (int)irq_line;
	printk(KERN_DEBUG "Succesfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
#endif
	/* show BARs */
	scan_bars(ape, dev);
	/* map BARs */
	rc = map_bars(ape, dev);
	if (rc)
		goto err_map;
#if ALTPCIECHDMA_CDEV
	/* initialize character device */
	rc = sg_init(ape);
	if (rc)
		goto err_cdev;
#endif
	/* perform DMA engines loop back test */
	rc = dma_test(ape, dev);
	(void)rc;
914
	/* successfully took the device */
915 916 917
	rc = 0;
	printk(KERN_DEBUG "probe() successful.\n");
	goto end;
918
#if ALTPCIECHDMA_CDEV
919 920 921
err_cdev:
	/* unmap the BARs */
	unmap_bars(ape, dev);
922
#endif
923 924 925 926 927 928 929 930 931 932 933 934 935 936
err_map:
	/* free allocated irq */
	if (ape->irq_line >= 0)
		free_irq(ape->irq_line, (void *)ape);
err_irq:
	if (ape->msi_enabled)
		pci_disable_msi(dev);
	/* disable the device iff it is not in use */
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		pci_release_regions(dev);
err_mask:
err_regions:
937
/*err_rev:*/
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/* clean up everything before device enable() */
err_enable:
	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
/* clean up everything before allocating descriptor table */
err_table:
	if (ape)
		kfree(ape);
err_ape:
end:
	return rc;
}

static void __devexit remove(struct pci_dev *dev)
{
953 954
	struct ape_dev *ape = dev_get_drvdata(&dev->dev);

955
	printk(KERN_DEBUG "remove(0x%p)\n", dev);
956 957
	printk(KERN_DEBUG "remove(dev = 0x%p) where ape = 0x%p\n", dev, ape);

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	/* remove character device */
#if ALTPCIECHDMA_CDEV
	sg_exit(ape);
#endif

	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);

	/* free IRQ
	 * @see LDD3 page 279
	 */
	if (ape->irq_line >= 0) {
		printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
		ape->irq_line, (unsigned long)ape);
		free_irq(ape->irq_line, (void *)ape);
	}
	/* MSI was enabled? */
	if (ape->msi_enabled) {
		/* Disable MSI @see Documentation/MSI-HOWTO.txt */
		pci_disable_msi(dev);
		ape->msi_enabled = 0;
	}
	/* unmap the BARs */
	unmap_bars(ape, dev);
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		/* to be called after device disable */
		pci_release_regions(dev);
}

#if ALTPCIECHDMA_CDEV

/*
 * Called when the device goes from unused to used.
 */
static int sg_open(struct inode *inode, struct file *file)
{
	struct ape_dev *ape;
	printk(KERN_DEBUG DRV_NAME "_open()\n");
	/* pointer to containing data structure of the character device inode */
	ape = container_of(inode->i_cdev, struct ape_dev, cdev);
	/* create a reference to our device state in the opened file */
	file->private_data = ape;
	/* create virtual memory mapper */
	ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
	return 0;
}

/*
 * Called when the device goes from used to unused.
 */
static int sg_close(struct inode *inode, struct file *file)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_close()\n");
	/* destroy virtual memory mapper */
	sg_destroy_mapper(ape->sgm);
	return 0;
}

static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	(void)ape;
	printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
	return count;
}

/* sg_write() - Write to the device
 *
 * @buf userspace buffer
 * @count number of bytes in the userspace buffer
 *
 * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
 * each DMA transfer.
 *   For each transfer, get the user pages, build a sglist, map, build a
 *   descriptor table. submit the transfer. wait for the interrupt handler
 *   to wake us on completion.
 */
static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
	int hwnents, tents;
	size_t transfer_len, remaining = count, done = 0;
	u64 transfer_addr = (u64)buf;
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
		buf, (s64)count, (u64)*pos);
	/* TODO transfer boundaries at PAGE_SIZE granularity */
1050
	while (remaining > 0) {
1051
		/* limit DMA transfer size */
1052
		transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN) ? remaining :
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			APE_CHDMA_MAX_TRANSFER_LEN;
		/* get all user space buffer pages and create a scattergather list */
		sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
		printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
		/* map all entries in the scattergather list */
		hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
		/* build device descriptor tables and submit them to the DMA engine */
		tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
		printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
#if 0
		while (tables) {
			/* TODO build table */
			/* TODO submit table to the device */
			/* if engine stopped and unfinished work then start engine */
		}
		put ourselves on wait queue
#endif

		dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		/* dirty and free the pages */
		sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
		/* book keeping */
		transfer_addr += transfer_len;
		remaining -= transfer_len;
		done += transfer_len;
	}
	return done;
}

/*
 * character device file operations
 */
1086 1087 1088 1089 1090 1091
static const struct file_operations sg_fops = {
	.owner = THIS_MODULE,
	.open = sg_open,
	.release = sg_close,
	.read = sg_read,
	.write = sg_write,
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
};

/* sg_init() - Initialize character device
 *
 * XXX Should ideally be tied to the device, on device probe, not module init.
 */
static int sg_init(struct ape_dev *ape)
{
	int rc;
	printk(KERN_DEBUG DRV_NAME " sg_init()\n");
	/* allocate a dynamically allocated character device node */
	rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
	/* allocation failed? */
	if (rc < 0) {
		printk("alloc_chrdev_region() = %d\n", rc);
		goto fail_alloc;
	}
	/* couple the device file operations to the character device */
	cdev_init(&ape->cdev, &sg_fops);
	ape->cdev.owner = THIS_MODULE;
	/* bring character device live */
	rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
	if (rc < 0) {
		printk("cdev_add() = %d\n", rc);
		goto fail_add;
	}
	printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
	return 0;
fail_add:
	/* free the dynamically allocated character device node */
    unregister_chrdev_region(ape->cdevno, 1/*count*/);
fail_alloc:
	return -1;
}

/* sg_exit() - Cleanup character device
 *
 * XXX Should ideally be tied to the device, on device remove, not module exit.
 */

static void sg_exit(struct ape_dev *ape)
{
	printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
	/* remove the character device */
	cdev_del(&ape->cdev);
	/* free the dynamically allocated character device node */
	unregister_chrdev_region(ape->cdevno, 1/*count*/);
}

#endif /* ALTPCIECHDMA_CDEV */

/* used to register the driver with the PCI kernel sub system
 * @see LDD3 page 311
 */
static struct pci_driver pci_driver = {
	.name = DRV_NAME,
	.id_table = ids,
	.probe = probe,
1150
	.remove = __devexit_p(remove),
1151 1152 1153 1154 1155 1156 1157 1158
	/* resume, suspend are optional */
};

/**
 * alterapciechdma_init() - Module initialization, registers devices.
 */
static int __init alterapciechdma_init(void)
{
1159
	int rc = 0;
1160 1161 1162 1163
	printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
	/* register this driver with the PCI bus driver */
	rc = pci_register_driver(&pci_driver);
	if (rc < 0)
1164
		return rc;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	return 0;
}

/**
 * alterapciechdma_init() - Module cleanup, unregisters devices.
 */
static void __exit alterapciechdma_exit(void)
{
	printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
	/* unregister this driver from the PCI bus driver */
	pci_unregister_driver(&pci_driver);
}

MODULE_LICENSE("GPL");

module_init(alterapciechdma_init);
module_exit(alterapciechdma_exit);