coredump.c 21.3 KB
Newer Older
1 2 3
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
4
#include <linux/freezer.h>
5 6 7 8 9 10 11 12 13 14 15 16 17
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
18
#include <linux/coredump.h>
19
#include <linux/sched/coredump.h>
20
#include <linux/sched/signal.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <linux/oom.h>
#include <linux/compat.h>
39 40
#include <linux/fs.h>
#include <linux/path.h>
41
#include <linux/timekeeping.h>
42

43
#include <linux/uaccess.h>
44 45 46 47 48 49 50 51 52 53 54
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/exec.h>

#include <trace/events/task.h>
#include "internal.h"

#include <trace/events/sched.h>

int core_uses_pid;
unsigned int core_pipe_limit;
55 56
char core_pattern[CORENAME_MAX_SIZE] = "core";
static int core_name_size = CORENAME_MAX_SIZE;
57 58 59 60 61 62 63 64

struct core_name {
	char *corename;
	int used, size;
};

/* The maximal length of core_pattern is also specified in sysctl.c */

65
static int expand_corename(struct core_name *cn, int size)
66
{
67
	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
68

69
	if (!corename)
70 71
		return -ENOMEM;

72 73 74 75
	if (size > core_name_size) /* racy but harmless */
		core_name_size = size;

	cn->size = ksize(corename);
76
	cn->corename = corename;
77 78 79
	return 0;
}

80 81
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
				     va_list arg)
82
{
83
	int free, need;
84
	va_list arg_copy;
85

86 87
again:
	free = cn->size - cn->used;
88 89 90 91 92

	va_copy(arg_copy, arg);
	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
	va_end(arg_copy);

93 94 95 96
	if (need < free) {
		cn->used += need;
		return 0;
	}
97

98
	if (!expand_corename(cn, cn->size + need - free + 1))
99
		goto again;
100

101
	return -ENOMEM;
102 103
}

104
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
105 106 107 108 109 110 111 112 113 114 115
{
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

	return ret;
}

116 117
static __printf(2, 3)
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
118
{
119 120 121 122 123 124 125 126
	int cur = cn->used;
	va_list arg;
	int ret;

	va_start(arg, fmt);
	ret = cn_vprintf(cn, fmt, arg);
	va_end(arg);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	if (ret == 0) {
		/*
		 * Ensure that this coredump name component can't cause the
		 * resulting corefile path to consist of a ".." or ".".
		 */
		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
				(cn->used - cur == 2 && cn->corename[cur] == '.'
				&& cn->corename[cur+1] == '.'))
			cn->corename[cur] = '!';

		/*
		 * Empty names are fishy and could be used to create a "//" in a
		 * corefile name, causing the coredump to happen one directory
		 * level too high. Enforce that all components of the core
		 * pattern are at least one character long.
		 */
		if (cn->used == cur)
			ret = cn_printf(cn, "!");
	}

147 148 149 150 151
	for (; cur < cn->used; ++cur) {
		if (cn->corename[cur] == '/')
			cn->corename[cur] = '!';
	}
	return ret;
152 153 154 155 156 157 158 159 160
}

static int cn_print_exe_file(struct core_name *cn)
{
	struct file *exe_file;
	char *pathbuf, *path;
	int ret;

	exe_file = get_mm_exe_file(current->mm);
161 162
	if (!exe_file)
		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
163 164 165 166 167 168 169

	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
	if (!pathbuf) {
		ret = -ENOMEM;
		goto put_exe_file;
	}

Miklos Szeredi's avatar
Miklos Szeredi committed
170
	path = file_path(exe_file, pathbuf, PATH_MAX);
171 172 173 174 175
	if (IS_ERR(path)) {
		ret = PTR_ERR(path);
		goto free_buf;
	}

176
	ret = cn_esc_printf(cn, "%s", path);
177 178 179 180 181 182 183 184 185 186 187 188

free_buf:
	kfree(pathbuf);
put_exe_file:
	fput(exe_file);
	return ret;
}

/* format_corename will inspect the pattern parameter, and output a
 * name into corename, which must have space for at least
 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
 */
189
static int format_corename(struct core_name *cn, struct coredump_params *cprm)
190 191 192 193 194 195 196
{
	const struct cred *cred = current_cred();
	const char *pat_ptr = core_pattern;
	int ispipe = (*pat_ptr == '|');
	int pid_in_pattern = 0;
	int err = 0;

197
	cn->used = 0;
198 199
	cn->corename = NULL;
	if (expand_corename(cn, core_name_size))
200
		return -ENOMEM;
201 202 203 204
	cn->corename[0] = '\0';

	if (ispipe)
		++pat_ptr;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	/* Repeat as long as we have more pattern to process and more output
	   space */
	while (*pat_ptr) {
		if (*pat_ptr != '%') {
			err = cn_printf(cn, "%c", *pat_ptr++);
		} else {
			switch (*++pat_ptr) {
			/* single % at the end, drop that */
			case 0:
				goto out;
			/* Double percent, output one percent */
			case '%':
				err = cn_printf(cn, "%c", '%');
				break;
			/* pid */
			case 'p':
				pid_in_pattern = 1;
				err = cn_printf(cn, "%d",
					      task_tgid_vnr(current));
				break;
226 227 228 229 230
			/* global pid */
			case 'P':
				err = cn_printf(cn, "%d",
					      task_tgid_nr(current));
				break;
231 232 233 234 235 236 237 238
			case 'i':
				err = cn_printf(cn, "%d",
					      task_pid_vnr(current));
				break;
			case 'I':
				err = cn_printf(cn, "%d",
					      task_pid_nr(current));
				break;
239 240
			/* uid */
			case 'u':
241 242 243
				err = cn_printf(cn, "%u",
						from_kuid(&init_user_ns,
							  cred->uid));
244 245 246
				break;
			/* gid */
			case 'g':
247 248 249
				err = cn_printf(cn, "%u",
						from_kgid(&init_user_ns,
							  cred->gid));
250
				break;
251 252 253 254
			case 'd':
				err = cn_printf(cn, "%d",
					__get_dumpable(cprm->mm_flags));
				break;
255 256
			/* signal that caused the coredump */
			case 's':
257 258
				err = cn_printf(cn, "%d",
						cprm->siginfo->si_signo);
259 260 261
				break;
			/* UNIX time of coredump */
			case 't': {
262 263 264 265
				time64_t time;

				time = ktime_get_real_seconds();
				err = cn_printf(cn, "%lld", time);
266 267 268
				break;
			}
			/* hostname */
269
			case 'h':
270
				down_read(&uts_sem);
271
				err = cn_esc_printf(cn, "%s",
272 273 274 275
					      utsname()->nodename);
				up_read(&uts_sem);
				break;
			/* executable */
276 277
			case 'e':
				err = cn_esc_printf(cn, "%s", current->comm);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
				break;
			case 'E':
				err = cn_print_exe_file(cn);
				break;
			/* core limit size */
			case 'c':
				err = cn_printf(cn, "%lu",
					      rlimit(RLIMIT_CORE));
				break;
			default:
				break;
			}
			++pat_ptr;
		}

		if (err)
			return err;
	}

297
out:
298 299 300 301 302 303 304 305 306 307 308 309 310
	/* Backward compatibility with core_uses_pid:
	 *
	 * If core_pattern does not include a %p (as is the default)
	 * and core_uses_pid is set, then .%pid will be appended to
	 * the filename. Do not do this for piped commands. */
	if (!ispipe && !pid_in_pattern && core_uses_pid) {
		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
		if (err)
			return err;
	}
	return ispipe;
}

311
static int zap_process(struct task_struct *start, int exit_code, int flags)
312 313 314 315
{
	struct task_struct *t;
	int nr = 0;

316 317
	/* ignore all signals except SIGKILL, see prepare_signal() */
	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
318 319 320
	start->signal->group_exit_code = exit_code;
	start->signal->group_stop_count = 0;

321
	for_each_thread(start, t) {
322 323 324 325 326 327
		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
		if (t != current && t->mm) {
			sigaddset(&t->pending.signal, SIGKILL);
			signal_wake_up(t, 1);
			nr++;
		}
328
	}
329 330 331 332

	return nr;
}

333 334
static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
			struct core_state *core_state, int exit_code)
335 336 337 338 339 340 341 342
{
	struct task_struct *g, *p;
	unsigned long flags;
	int nr = -EAGAIN;

	spin_lock_irq(&tsk->sighand->siglock);
	if (!signal_group_exit(tsk->signal)) {
		mm->core_state = core_state;
343
		tsk->signal->group_exit_task = tsk;
344
		nr = zap_process(tsk, exit_code, 0);
345
		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
346 347 348 349 350
	}
	spin_unlock_irq(&tsk->sighand->siglock);
	if (unlikely(nr < 0))
		return nr;

351
	tsk->flags |= PF_DUMPCORE;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	if (atomic_read(&mm->mm_users) == nr + 1)
		goto done;
	/*
	 * We should find and kill all tasks which use this mm, and we should
	 * count them correctly into ->nr_threads. We don't take tasklist
	 * lock, but this is safe wrt:
	 *
	 * fork:
	 *	None of sub-threads can fork after zap_process(leader). All
	 *	processes which were created before this point should be
	 *	visible to zap_threads() because copy_process() adds the new
	 *	process to the tail of init_task.tasks list, and lock/unlock
	 *	of ->siglock provides a memory barrier.
	 *
	 * do_exit:
	 *	The caller holds mm->mmap_sem. This means that the task which
	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
	 *	its ->mm.
	 *
	 * de_thread:
	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
	 *	we must see either old or new leader, this does not matter.
	 *	However, it can change p->sighand, so lock_task_sighand(p)
	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
	 *	it can't fail.
	 *
	 *	Note also that "g" can be the old leader with ->mm == NULL
	 *	and already unhashed and thus removed from ->thread_group.
	 *	This is OK, __unhash_process()->list_del_rcu() does not
	 *	clear the ->next pointer, we will find the new leader via
	 *	next_thread().
	 */
	rcu_read_lock();
	for_each_process(g) {
		if (g == tsk->group_leader)
			continue;
		if (g->flags & PF_KTHREAD)
			continue;
390 391 392 393 394 395 396 397 398

		for_each_thread(g, p) {
			if (unlikely(!p->mm))
				continue;
			if (unlikely(p->mm == mm)) {
				lock_task_sighand(p, &flags);
				nr += zap_process(p, exit_code,
							SIGNAL_GROUP_EXIT);
				unlock_task_sighand(p, &flags);
399
			}
400 401
			break;
		}
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	}
	rcu_read_unlock();
done:
	atomic_set(&core_state->nr_threads, nr);
	return nr;
}

static int coredump_wait(int exit_code, struct core_state *core_state)
{
	struct task_struct *tsk = current;
	struct mm_struct *mm = tsk->mm;
	int core_waiters = -EBUSY;

	init_completion(&core_state->startup);
	core_state->dumper.task = tsk;
	core_state->dumper.next = NULL;

419 420 421
	if (down_write_killable(&mm->mmap_sem))
		return -EINTR;

422 423 424 425 426 427 428
	if (!mm->core_state)
		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
	up_write(&mm->mmap_sem);

	if (core_waiters > 0) {
		struct core_thread *ptr;

429
		freezer_do_not_count();
430
		wait_for_completion(&core_state->startup);
431
		freezer_count();
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		/*
		 * Wait for all the threads to become inactive, so that
		 * all the thread context (extended register state, like
		 * fpu etc) gets copied to the memory.
		 */
		ptr = core_state->dumper.next;
		while (ptr != NULL) {
			wait_task_inactive(ptr->task, 0);
			ptr = ptr->next;
		}
	}

	return core_waiters;
}

447
static void coredump_finish(struct mm_struct *mm, bool core_dumped)
448 449 450 451
{
	struct core_thread *curr, *next;
	struct task_struct *task;

452
	spin_lock_irq(&current->sighand->siglock);
453 454
	if (core_dumped && !__fatal_signal_pending(current))
		current->signal->group_exit_code |= 0x80;
455 456 457 458
	current->signal->group_exit_task = NULL;
	current->signal->flags = SIGNAL_GROUP_EXIT;
	spin_unlock_irq(&current->sighand->siglock);

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	next = mm->core_state->dumper.next;
	while ((curr = next) != NULL) {
		next = curr->next;
		task = curr->task;
		/*
		 * see exit_mm(), curr->task must not see
		 * ->task == NULL before we read ->next.
		 */
		smp_mb();
		curr->task = NULL;
		wake_up_process(task);
	}

	mm->core_state = NULL;
}

475 476 477 478 479 480 481 482 483 484 485
static bool dump_interrupted(void)
{
	/*
	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
	 * can do try_to_freeze() and check __fatal_signal_pending(),
	 * but then we need to teach dump_write() to restart and clear
	 * TIF_SIGPENDING.
	 */
	return signal_pending(current);
}

486 487
static void wait_for_dump_helpers(struct file *file)
{
488
	struct pipe_inode_info *pipe = file->private_data;
489 490 491 492

	pipe_lock(pipe);
	pipe->readers++;
	pipe->writers--;
493 494 495
	wake_up_interruptible_sync(&pipe->wait);
	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
	pipe_unlock(pipe);
496

497 498 499 500 501
	/*
	 * We actually want wait_event_freezable() but then we need
	 * to clear TIF_SIGPENDING and improve dump_interrupted().
	 */
	wait_event_interruptible(pipe->wait, pipe->readers == 1);
502

503
	pipe_lock(pipe);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	pipe->readers--;
	pipe->writers++;
	pipe_unlock(pipe);
}

/*
 * umh_pipe_setup
 * helper function to customize the process used
 * to collect the core in userspace.  Specifically
 * it sets up a pipe and installs it as fd 0 (stdin)
 * for the process.  Returns 0 on success, or
 * PTR_ERR on failure.
 * Note that it also sets the core limit to 1.  This
 * is a special value that we use to trap recursive
 * core dumps
 */
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
	struct file *files[2];
	struct coredump_params *cp = (struct coredump_params *)info->data;
	int err = create_pipe_files(files, 0);
	if (err)
		return err;

	cp->file = files[1];

Al Viro's avatar
Al Viro committed
530 531
	err = replace_fd(0, files[0], 0);
	fput(files[0]);
532 533 534
	/* and disallow core files too */
	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};

Al Viro's avatar
Al Viro committed
535
	return err;
536 537
}

Al Viro's avatar
Al Viro committed
538
void do_coredump(const siginfo_t *siginfo)
539 540 541 542 543 544 545 546 547 548
{
	struct core_state core_state;
	struct core_name cn;
	struct mm_struct *mm = current->mm;
	struct linux_binfmt * binfmt;
	const struct cred *old_cred;
	struct cred *cred;
	int retval = 0;
	int ispipe;
	struct files_struct *displaced;
549 550
	/* require nonrelative corefile path and be extra careful */
	bool need_suid_safe = false;
551
	bool core_dumped = false;
552 553
	static atomic_t core_dump_count = ATOMIC_INIT(0);
	struct coredump_params cprm = {
554
		.siginfo = siginfo,
555
		.regs = signal_pt_regs(),
556 557 558 559 560 561 562 563 564
		.limit = rlimit(RLIMIT_CORE),
		/*
		 * We must use the same mm->flags while dumping core to avoid
		 * inconsistency of bit flags, since this flag is not protected
		 * by any locks.
		 */
		.mm_flags = mm->flags,
	};

565
	audit_core_dumps(siginfo->si_signo);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	binfmt = mm->binfmt;
	if (!binfmt || !binfmt->core_dump)
		goto fail;
	if (!__get_dumpable(cprm.mm_flags))
		goto fail;

	cred = prepare_creds();
	if (!cred)
		goto fail;
	/*
	 * We cannot trust fsuid as being the "true" uid of the process
	 * nor do we know its entire history. We only know it was tainted
	 * so we dump it as root in mode 2, and only into a controlled
	 * environment (pipe handler or fully qualified path).
	 */
582
	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
583 584
		/* Setuid core dump mode */
		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
585
		need_suid_safe = true;
586 587
	}

588
	retval = coredump_wait(siginfo->si_signo, &core_state);
589 590 591 592 593
	if (retval < 0)
		goto fail_creds;

	old_cred = override_creds(cred);

594
	ispipe = format_corename(&cn, &cprm);
595

596
	if (ispipe) {
597 598
		int dump_count;
		char **helper_argv;
599
		struct subprocess_info *sub_info;
600 601 602 603

		if (ispipe < 0) {
			printk(KERN_WARNING "format_corename failed\n");
			printk(KERN_WARNING "Aborting core\n");
604
			goto fail_unlock;
605 606 607 608 609 610 611
		}

		if (cprm.limit == 1) {
			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
			 *
			 * Normally core limits are irrelevant to pipes, since
			 * we're not writing to the file system, but we use
612
			 * cprm.limit of 1 here as a special value, this is a
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
			 * consistent way to catch recursive crashes.
			 * We can still crash if the core_pattern binary sets
			 * RLIM_CORE = !1, but it runs as root, and can do
			 * lots of stupid things.
			 *
			 * Note that we use task_tgid_vnr here to grab the pid
			 * of the process group leader.  That way we get the
			 * right pid if a thread in a multi-threaded
			 * core_pattern process dies.
			 */
			printk(KERN_WARNING
				"Process %d(%s) has RLIMIT_CORE set to 1\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Aborting core\n");
			goto fail_unlock;
		}
		cprm.limit = RLIM_INFINITY;

		dump_count = atomic_inc_return(&core_dump_count);
		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
			       task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_dropcount;
		}

639
		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
640 641 642 643 644 645
		if (!helper_argv) {
			printk(KERN_WARNING "%s failed to allocate memory\n",
			       __func__);
			goto fail_dropcount;
		}

646 647 648 649 650 651 652 653
		retval = -ENOMEM;
		sub_info = call_usermodehelper_setup(helper_argv[0],
						helper_argv, NULL, GFP_KERNEL,
						umh_pipe_setup, NULL, &cprm);
		if (sub_info)
			retval = call_usermodehelper_exec(sub_info,
							  UMH_WAIT_EXEC);

654 655
		argv_free(helper_argv);
		if (retval) {
656
			printk(KERN_INFO "Core dump to |%s pipe failed\n",
657 658
			       cn.corename);
			goto close_fail;
659
		}
660 661
	} else {
		struct inode *inode;
662 663
		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
				 O_LARGEFILE | O_EXCL;
664 665 666 667

		if (cprm.limit < binfmt->min_coredump)
			goto fail_unlock;

668
		if (need_suid_safe && cn.corename[0] != '/') {
669 670 671 672 673 674 675
			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
				"to fully qualified path!\n",
				task_tgid_vnr(current), current->comm);
			printk(KERN_WARNING "Skipping core dump\n");
			goto fail_unlock;
		}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		/*
		 * Unlink the file if it exists unless this is a SUID
		 * binary - in that case, we're running around with root
		 * privs and don't want to unlink another user's coredump.
		 */
		if (!need_suid_safe) {
			mm_segment_t old_fs;

			old_fs = get_fs();
			set_fs(KERNEL_DS);
			/*
			 * If it doesn't exist, that's fine. If there's some
			 * other problem, we'll catch it at the filp_open().
			 */
			(void) sys_unlink((const char __user *)cn.corename);
			set_fs(old_fs);
		}

		/*
		 * There is a race between unlinking and creating the
		 * file, but if that causes an EEXIST here, that's
		 * fine - another process raced with us while creating
		 * the corefile, and the other process won. To userspace,
		 * what matters is that at least one of the two processes
		 * writes its coredump successfully, not which one.
		 */
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		if (need_suid_safe) {
			/*
			 * Using user namespaces, normal user tasks can change
			 * their current->fs->root to point to arbitrary
			 * directories. Since the intention of the "only dump
			 * with a fully qualified path" rule is to control where
			 * coredumps may be placed using root privileges,
			 * current->fs->root must not be used. Instead, use the
			 * root directory of init_task.
			 */
			struct path root;

			task_lock(&init_task);
			get_fs_root(init_task.fs, &root);
			task_unlock(&init_task);
			cprm.file = file_open_root(root.dentry, root.mnt,
				cn.corename, open_flags, 0600);
			path_put(&root);
		} else {
			cprm.file = filp_open(cn.corename, open_flags, 0600);
		}
723 724 725
		if (IS_ERR(cprm.file))
			goto fail_unlock;

Al Viro's avatar
Al Viro committed
726
		inode = file_inode(cprm.file);
727 728 729 730 731 732 733 734 735 736 737
		if (inode->i_nlink > 1)
			goto close_fail;
		if (d_unhashed(cprm.file->f_path.dentry))
			goto close_fail;
		/*
		 * AK: actually i see no reason to not allow this for named
		 * pipes etc, but keep the previous behaviour for now.
		 */
		if (!S_ISREG(inode->i_mode))
			goto close_fail;
		/*
738 739 740 741
		 * Don't dump core if the filesystem changed owner or mode
		 * of the file during file creation. This is an issue when
		 * a process dumps core while its cwd is e.g. on a vfat
		 * filesystem.
742 743 744
		 */
		if (!uid_eq(inode->i_uid, current_fsuid()))
			goto close_fail;
745 746
		if ((inode->i_mode & 0677) != 0600)
			goto close_fail;
Al Viro's avatar
Al Viro committed
747
		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
748 749 750 751 752 753 754 755 756 757 758
			goto close_fail;
		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
			goto close_fail;
	}

	/* get us an unshared descriptor table; almost always a no-op */
	retval = unshare_files(&displaced);
	if (retval)
		goto close_fail;
	if (displaced)
		put_files_struct(displaced);
759 760 761 762 763
	if (!dump_interrupted()) {
		file_start_write(cprm.file);
		core_dumped = binfmt->core_dump(&cprm);
		file_end_write(cprm.file);
	}
764 765 766 767 768 769 770 771 772 773
	if (ispipe && core_pipe_limit)
		wait_for_dump_helpers(cprm.file);
close_fail:
	if (cprm.file)
		filp_close(cprm.file, NULL);
fail_dropcount:
	if (ispipe)
		atomic_dec(&core_dump_count);
fail_unlock:
	kfree(cn.corename);
774
	coredump_finish(mm, core_dumped);
775 776 777 778 779 780 781 782 783 784 785 786
	revert_creds(old_cred);
fail_creds:
	put_cred(cred);
fail:
	return;
}

/*
 * Core dumping helper functions.  These are the only things you should
 * do on a core-file: use only these functions to write out all the
 * necessary info.
 */
Al Viro's avatar
Al Viro committed
787 788 789
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
{
	struct file *file = cprm->file;
790 791
	loff_t pos = file->f_pos;
	ssize_t n;
792
	if (cprm->written + nr > cprm->limit)
Al Viro's avatar
Al Viro committed
793
		return 0;
794 795 796
	while (nr) {
		if (dump_interrupted())
			return 0;
797
		n = __kernel_write(file, addr, nr, &pos);
798 799 800
		if (n <= 0)
			return 0;
		file->f_pos = pos;
801
		cprm->written += n;
802
		cprm->pos += n;
803 804
		nr -= n;
	}
Al Viro's avatar
Al Viro committed
805 806 807 808
	return 1;
}
EXPORT_SYMBOL(dump_emit);

809
int dump_skip(struct coredump_params *cprm, size_t nr)
810
{
811 812
	static char zeroes[PAGE_SIZE];
	struct file *file = cprm->file;
813
	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
814
		if (dump_interrupted() ||
815
		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
816
			return 0;
817
		cprm->pos += nr;
818
		return 1;
819
	} else {
820 821 822 823
		while (nr > PAGE_SIZE) {
			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
				return 0;
			nr -= PAGE_SIZE;
824
		}
825
		return dump_emit(cprm, zeroes, nr);
826 827
	}
}
828
EXPORT_SYMBOL(dump_skip);
Al Viro's avatar
Al Viro committed
829 830 831

int dump_align(struct coredump_params *cprm, int align)
{
832
	unsigned mod = cprm->pos & (align - 1);
Al Viro's avatar
Al Viro committed
833
	if (align & (align - 1))
Al Viro's avatar
Al Viro committed
834 835
		return 0;
	return mod ? dump_skip(cprm, align - mod) : 1;
Al Viro's avatar
Al Viro committed
836 837
}
EXPORT_SYMBOL(dump_align);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

/*
 * Ensures that file size is big enough to contain the current file
 * postion. This prevents gdb from complaining about a truncated file
 * if the last "write" to the file was dump_skip.
 */
void dump_truncate(struct coredump_params *cprm)
{
	struct file *file = cprm->file;
	loff_t offset;

	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
		offset = file->f_op->llseek(file, 0, SEEK_CUR);
		if (i_size_read(file->f_mapping->host) < offset)
			do_truncate(file->f_path.dentry, offset, 0, file);
	}
}
EXPORT_SYMBOL(dump_truncate);