ansi_cprng.c 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * PRNG: Pseudo Random Number Generator
 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
 *       AES 128 cipher
 *
 *  (C) Neil Horman <nhorman@tuxdriver.com>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  any later version.
 *
 *
 */

#include <crypto/internal/rng.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>

#define DEFAULT_PRNG_KEY "0123456789abcdef"
#define DEFAULT_PRNG_KSZ 16
#define DEFAULT_BLK_SZ 16
#define DEFAULT_V_SEED "zaybxcwdveuftgsh"

/*
 * Flags for the prng_context flags field
 */

#define PRNG_FIXED_SIZE 0x1
#define PRNG_NEED_RESET 0x2

/*
 * Note: DT is our counter value
 *	 I is our intermediate value
 *	 V is our seed vector
 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 * for implementation details
 */


struct prng_context {
	spinlock_t prng_lock;
	unsigned char rand_data[DEFAULT_BLK_SZ];
	unsigned char last_rand_data[DEFAULT_BLK_SZ];
	unsigned char DT[DEFAULT_BLK_SZ];
	unsigned char I[DEFAULT_BLK_SZ];
	unsigned char V[DEFAULT_BLK_SZ];
	u32 rand_data_valid;
	struct crypto_cipher *tfm;
	u32 flags;
};

static int dbg;

static void hexdump(char *note, unsigned char *buf, unsigned int len)
{
	if (dbg) {
		printk(KERN_CRIT "%s", note);
		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
				16, 1,
				buf, len, false);
	}
}

#define dbgprint(format, args...) do {\
if (dbg)\
	printk(format, ##args);\
} while (0)

static void xor_vectors(unsigned char *in1, unsigned char *in2,
			unsigned char *out, unsigned int size)
{
	int i;

	for (i = 0; i < size; i++)
		out[i] = in1[i] ^ in2[i];

}
/*
 * Returns DEFAULT_BLK_SZ bytes of random data per call
84
 * returns 0 if generation succeeded, <0 if something went wrong
85
 */
86
static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	int i;
	unsigned char tmp[DEFAULT_BLK_SZ];
	unsigned char *output = NULL;


	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
		ctx);

	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);

	/*
	 * This algorithm is a 3 stage state machine
	 */
	for (i = 0; i < 3; i++) {

		switch (i) {
		case 0:
			/*
			 * Start by encrypting the counter value
			 * This gives us an intermediate value I
			 */
			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
			output = ctx->I;
			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
			break;
		case 1:

			/*
			 * Next xor I with our secret vector V
			 * encrypt that result to obtain our
			 * pseudo random data which we output
			 */
			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
			output = ctx->rand_data;
			break;
		case 2:
			/*
			 * First check that we didn't produce the same
			 * random data that we did last time around through this
			 */
			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
					DEFAULT_BLK_SZ)) {
133
				if (cont_test) {
134 135 136 137
					panic("cprng %p Failed repetition check!\n",
						ctx);
				}

138 139 140
				printk(KERN_ERR
					"ctx %p Failed repetition check!\n",
					ctx);
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
				ctx->flags |= PRNG_NEED_RESET;
				return -EINVAL;
			}
			memcpy(ctx->last_rand_data, ctx->rand_data,
				DEFAULT_BLK_SZ);

			/*
			 * Lastly xor the random data with I
			 * and encrypt that to obtain a new secret vector V
			 */
			xor_vectors(ctx->rand_data, ctx->I, tmp,
				DEFAULT_BLK_SZ);
			output = ctx->V;
			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
			break;
		}


		/* do the encryption */
		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);

	}

	/*
	 * Now update our DT value
	 */
168
	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		ctx->DT[i] += 1;
		if (ctx->DT[i] != 0)
			break;
	}

	dbgprint("Returning new block for context %p\n", ctx);
	ctx->rand_data_valid = 0;

	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);

	return 0;
}

/* Our exported functions */
186 187
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
				int do_cont_test)
188 189 190 191 192 193
{
	unsigned char *ptr = buf;
	unsigned int byte_count = (unsigned int)nbytes;
	int err;


194
	spin_lock_bh(&ctx->prng_lock);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

	err = -EINVAL;
	if (ctx->flags & PRNG_NEED_RESET)
		goto done;

	/*
	 * If the FIXED_SIZE flag is on, only return whole blocks of
	 * pseudo random data
	 */
	err = -EINVAL;
	if (ctx->flags & PRNG_FIXED_SIZE) {
		if (nbytes < DEFAULT_BLK_SZ)
			goto done;
		byte_count = DEFAULT_BLK_SZ;
	}

211 212 213 214 215
	/*
	 * Return 0 in case of success as mandated by the kernel
	 * crypto API interface definition.
	 */
	err = 0;
216 217 218 219 220 221 222

	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
		byte_count, ctx);


remainder:
	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
223
		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
224 225 226 227 228 229 230
			memset(buf, 0, nbytes);
			err = -EINVAL;
			goto done;
		}
	}

	/*
231
	 * Copy any data less than an entire block
232 233
	 */
	if (byte_count < DEFAULT_BLK_SZ) {
234
empty_rbuf:
235
		while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
236 237 238
			*ptr = ctx->rand_data[ctx->rand_data_valid];
			ptr++;
			byte_count--;
239
			ctx->rand_data_valid++;
240 241 242 243 244 245 246 247 248
			if (byte_count == 0)
				goto done;
		}
	}

	/*
	 * Now copy whole blocks
	 */
	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
249
		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
250
			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
251 252 253 254
				memset(buf, 0, nbytes);
				err = -EINVAL;
				goto done;
			}
255
		}
256 257
		if (ctx->rand_data_valid > 0)
			goto empty_rbuf;
258 259 260 261 262 263
		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
		ctx->rand_data_valid += DEFAULT_BLK_SZ;
		ptr += DEFAULT_BLK_SZ;
	}

	/*
264
	 * Now go back and get any remaining partial block
265 266 267 268 269
	 */
	if (byte_count)
		goto remainder;

done:
270
	spin_unlock_bh(&ctx->prng_lock);
271 272 273 274 275 276 277 278 279 280 281
	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
		err, ctx);
	return err;
}

static void free_prng_context(struct prng_context *ctx)
{
	crypto_free_cipher(ctx->tfm);
}

static int reset_prng_context(struct prng_context *ctx,
282 283
			      const unsigned char *key, size_t klen,
			      const unsigned char *V, const unsigned char *DT)
284 285
{
	int ret;
286
	const unsigned char *prng_key;
287

288
	spin_lock_bh(&ctx->prng_lock);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	ctx->flags |= PRNG_NEED_RESET;

	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;

	if (!key)
		klen = DEFAULT_PRNG_KSZ;

	if (V)
		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
	else
		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);

	if (DT)
		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
	else
		memset(ctx->DT, 0, DEFAULT_BLK_SZ);

	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);

	ctx->rand_data_valid = DEFAULT_BLK_SZ;

	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
	if (ret) {
		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
			crypto_cipher_get_flags(ctx->tfm));
		goto out;
	}

318
	ret = 0;
319 320
	ctx->flags &= ~PRNG_NEED_RESET;
out:
321
	spin_unlock_bh(&ctx->prng_lock);
322
	return ret;
323 324 325 326 327 328 329
}

static int cprng_init(struct crypto_tfm *tfm)
{
	struct prng_context *ctx = crypto_tfm_ctx(tfm);

	spin_lock_init(&ctx->prng_lock);
330 331 332 333 334 335
	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
	if (IS_ERR(ctx->tfm)) {
		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
				ctx);
		return PTR_ERR(ctx->tfm);
	}
336

337 338 339 340 341 342 343 344 345 346
	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
		return -EINVAL;

	/*
	 * after allocation, we should always force the user to reset
	 * so they don't inadvertently use the insecure default values
	 * without specifying them intentially
	 */
	ctx->flags |= PRNG_NEED_RESET;
	return 0;
347 348 349 350 351 352 353
}

static void cprng_exit(struct crypto_tfm *tfm)
{
	free_prng_context(crypto_tfm_ctx(tfm));
}

354 355 356
static int cprng_get_random(struct crypto_rng *tfm,
			    const u8 *src, unsigned int slen,
			    u8 *rdata, unsigned int dlen)
357 358 359
{
	struct prng_context *prng = crypto_rng_ctx(tfm);

360 361 362
	return get_prng_bytes(rdata, dlen, prng, 0);
}

363 364 365 366 367 368
/*
 *  This is the cprng_registered reset method the seed value is
 *  interpreted as the tuple { V KEY DT}
 *  V and KEY are required during reset, and DT is optional, detected
 *  as being present by testing the length of the seed
 */
369 370
static int cprng_reset(struct crypto_rng *tfm,
		       const u8 *seed, unsigned int slen)
371 372
{
	struct prng_context *prng = crypto_rng_ctx(tfm);
373 374
	const u8 *key = seed + DEFAULT_BLK_SZ;
	const u8 *dt = NULL;
375 376 377 378

	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
		return -EINVAL;

379 380 381 382
	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
		dt = key + DEFAULT_PRNG_KSZ;

	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
383 384 385 386 387 388

	if (prng->flags & PRNG_NEED_RESET)
		return -EINVAL;
	return 0;
}

389
#ifdef CONFIG_CRYPTO_FIPS
390 391 392
static int fips_cprng_get_random(struct crypto_rng *tfm,
				 const u8 *src, unsigned int slen,
				 u8 *rdata, unsigned int dlen)
393 394 395 396 397 398
{
	struct prng_context *prng = crypto_rng_ctx(tfm);

	return get_prng_bytes(rdata, dlen, prng, 1);
}

399 400
static int fips_cprng_reset(struct crypto_rng *tfm,
			    const u8 *seed, unsigned int slen)
401 402
{
	u8 rdata[DEFAULT_BLK_SZ];
403
	const u8 *key = seed + DEFAULT_BLK_SZ;
404 405 406 407
	int rc;

	struct prng_context *prng = crypto_rng_ctx(tfm);

408 409 410 411 412 413 414
	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
		return -EINVAL;

	/* fips strictly requires seed != key */
	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
		return -EINVAL;

415 416 417 418 419 420 421 422 423 424 425 426
	rc = cprng_reset(tfm, seed, slen);

	if (!rc)
		goto out;

	/* this primes our continuity test */
	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
	prng->rand_data_valid = DEFAULT_BLK_SZ;

out:
	return rc;
}
427
#endif
428

429 430 431 432 433 434 435 436 437 438 439 440
static struct rng_alg rng_algs[] = { {
	.generate		= cprng_get_random,
	.seed			= cprng_reset,
	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
	.base			=	{
		.cra_name		= "stdrng",
		.cra_driver_name	= "ansi_cprng",
		.cra_priority		= 100,
		.cra_ctxsize		= sizeof(struct prng_context),
		.cra_module		= THIS_MODULE,
		.cra_init		= cprng_init,
		.cra_exit		= cprng_exit,
441 442 443
	}
#ifdef CONFIG_CRYPTO_FIPS
}, {
444 445 446 447 448 449 450 451 452 453 454
	.generate		= fips_cprng_get_random,
	.seed			= fips_cprng_reset,
	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
	.base			=	{
		.cra_name		= "fips(ansi_cprng)",
		.cra_driver_name	= "fips_ansi_cprng",
		.cra_priority		= 300,
		.cra_ctxsize		= sizeof(struct prng_context),
		.cra_module		= THIS_MODULE,
		.cra_init		= cprng_init,
		.cra_exit		= cprng_exit,
455 456
	}
#endif
457
} };
458 459 460 461

/* Module initalization */
static int __init prng_mod_init(void)
{
462
	return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
463 464 465 466
}

static void __exit prng_mod_fini(void)
{
467
	crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
468 469 470 471 472 473 474 475 476
}

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
module_param(dbg, int, 0);
MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
module_init(prng_mod_init);
module_exit(prng_mod_fini);
477
MODULE_ALIAS_CRYPTO("stdrng");
478
MODULE_ALIAS_CRYPTO("ansi_cprng");