gf128mul.c 12.4 KB
Newer Older
1 2 3 4 5 6
/* gf128mul.c - GF(2^128) multiplication functions
 *
 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based on Dr Brian Gladman's (GPL'd) work published at
7
 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 * See the original copyright notice below.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */

/*
 ---------------------------------------------------------------------------
 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:

   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;

   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;

   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.

 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue 31/01/2006

47
 This file provides fast multiplication in GF(2^128) as required by several
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
 cryptographic authentication modes
*/

#include <crypto/gf128mul.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>

#define gf128mul_dat(q) { \
	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/*
 * Given a value i in 0..255 as the byte overflow when a field element
 * in GF(2^128) is multiplied by x^8, the following macro returns the
 * 16-bit value that must be XOR-ed into the low-degree end of the
 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
 *
 * There are two versions of the macro, and hence two tables: one for
 * the "be" convention where the highest-order bit is the coefficient of
 * the highest-degree polynomial term, and one for the "le" convention
 * where the highest-order bit is the coefficient of the lowest-degree
 * polynomial term.  In both cases the values are stored in CPU byte
 * endianness such that the coefficients are ordered consistently across
 * bytes, i.e. in the "be" table bits 15..0 of the stored value
 * correspond to the coefficients of x^15..x^0, and in the "le" table
 * bits 15..0 correspond to the coefficients of x^0..x^15.
 *
 * Therefore, provided that the appropriate byte endianness conversions
 * are done by the multiplication functions (and these must be in place
 * anyway to support both little endian and big endian CPUs), the "be"
 * table can be used for multiplications of both "bbe" and "ble"
 * elements, and the "le" table can be used for multiplications of both
 * "lle" and "lbe" elements.
 */
114

115
#define xda_be(i) ( \
116 117 118 119
	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120 121
)

122
#define xda_le(i) ( \
123 124 125 126
	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127 128
)

129 130
static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131

132
/*
133
 * The following functions multiply a field element by x^8 in
134 135
 * the polynomial field representation.  They use 64-bit word operations
 * to gain speed but compensate for machine endianness and hence work
136 137 138 139 140 141 142
 * correctly on both styles of machine.
 */

static void gf128mul_x8_lle(be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
143
	u64 _tt = gf128mul_table_le[b & 0xff];
144 145 146 147 148 149 150 151 152

	x->b = cpu_to_be64((b >> 8) | (a << 56));
	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
}

static void gf128mul_x8_bbe(be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
153
	u64 _tt = gf128mul_table_be[a >> 56];
154 155 156 157 158

	x->a = cpu_to_be64((a << 8) | (b >> 56));
	x->b = cpu_to_be64((b << 8) ^ _tt);
}

159 160 161 162 163 164 165 166 167 168 169
void gf128mul_x8_ble(le128 *r, const le128 *x)
{
	u64 a = le64_to_cpu(x->a);
	u64 b = le64_to_cpu(x->b);
	u64 _tt = gf128mul_table_be[a >> 56];

	r->a = cpu_to_le64((a << 8) | (b >> 56));
	r->b = cpu_to_le64((b << 8) ^ _tt);
}
EXPORT_SYMBOL(gf128mul_x8_ble);

170 171 172 173 174 175 176 177 178
void gf128mul_lle(be128 *r, const be128 *b)
{
	be128 p[8];
	int i;

	p[0] = *r;
	for (i = 0; i < 7; ++i)
		gf128mul_x_lle(&p[i + 1], &p[i]);

179
	memset(r, 0, sizeof(*r));
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	for (i = 0;;) {
		u8 ch = ((u8 *)b)[15 - i];

		if (ch & 0x80)
			be128_xor(r, r, &p[0]);
		if (ch & 0x40)
			be128_xor(r, r, &p[1]);
		if (ch & 0x20)
			be128_xor(r, r, &p[2]);
		if (ch & 0x10)
			be128_xor(r, r, &p[3]);
		if (ch & 0x08)
			be128_xor(r, r, &p[4]);
		if (ch & 0x04)
			be128_xor(r, r, &p[5]);
		if (ch & 0x02)
			be128_xor(r, r, &p[6]);
		if (ch & 0x01)
			be128_xor(r, r, &p[7]);

		if (++i >= 16)
			break;

		gf128mul_x8_lle(r);
	}
}
EXPORT_SYMBOL(gf128mul_lle);

void gf128mul_bbe(be128 *r, const be128 *b)
{
	be128 p[8];
	int i;

	p[0] = *r;
	for (i = 0; i < 7; ++i)
		gf128mul_x_bbe(&p[i + 1], &p[i]);

217
	memset(r, 0, sizeof(*r));
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	for (i = 0;;) {
		u8 ch = ((u8 *)b)[i];

		if (ch & 0x80)
			be128_xor(r, r, &p[7]);
		if (ch & 0x40)
			be128_xor(r, r, &p[6]);
		if (ch & 0x20)
			be128_xor(r, r, &p[5]);
		if (ch & 0x10)
			be128_xor(r, r, &p[4]);
		if (ch & 0x08)
			be128_xor(r, r, &p[3]);
		if (ch & 0x04)
			be128_xor(r, r, &p[2]);
		if (ch & 0x02)
			be128_xor(r, r, &p[1]);
		if (ch & 0x01)
			be128_xor(r, r, &p[0]);

		if (++i >= 16)
			break;

		gf128mul_x8_bbe(r);
	}
}
EXPORT_SYMBOL(gf128mul_bbe);

/*      This version uses 64k bytes of table space.
    A 16 byte buffer has to be multiplied by a 16 byte key
248
    value in GF(2^128).  If we consider a GF(2^128) value in
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    the buffer's lowest byte, we can construct a table of
    the 256 16 byte values that result from the 256 values
    of this byte.  This requires 4096 bytes. But we also
    need tables for each of the 16 higher bytes in the
    buffer as well, which makes 64 kbytes in total.
*/
/* additional explanation
 * t[0][BYTE] contains g*BYTE
 * t[1][BYTE] contains g*x^8*BYTE
 *  ..
 * t[15][BYTE] contains g*x^120*BYTE */
struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
{
	struct gf128mul_64k *t;
	int i, j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	for (i = 0; i < 16; i++) {
		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
		if (!t->t[i]) {
			gf128mul_free_64k(t);
			t = NULL;
			goto out;
		}
	}

	t->t[0]->t[1] = *g;
	for (j = 1; j <= 64; j <<= 1)
		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);

	for (i = 0;;) {
		for (j = 2; j < 256; j += j)
			for (k = 1; k < j; ++k)
				be128_xor(&t->t[i]->t[j + k],
					  &t->t[i]->t[j], &t->t[i]->t[k]);

		if (++i >= 16)
			break;

		for (j = 128; j > 0; j >>= 1) {
			t->t[i]->t[j] = t->t[i - 1]->t[j];
			gf128mul_x8_bbe(&t->t[i]->t[j]);
		}
	}

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_64k_bbe);

void gf128mul_free_64k(struct gf128mul_64k *t)
{
	int i;

	for (i = 0; i < 16; i++)
307 308
		kzfree(t->t[i]);
	kzfree(t);
309 310 311
}
EXPORT_SYMBOL(gf128mul_free_64k);

312
void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
313 314 315 316 317 318 319 320 321 322 323 324 325 326
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i;

	*r = t->t[0]->t[ap[15]];
	for (i = 1; i < 16; ++i)
		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_64k_bbe);

/*      This version uses 4k bytes of table space.
    A 16 byte buffer has to be multiplied by a 16 byte key
327
    value in GF(2^128).  If we consider a GF(2^128) value in a
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    single byte, we can construct a table of the 256 16 byte
    values that result from the 256 values of this byte.
    This requires 4096 bytes. If we take the highest byte in
    the buffer and use this table to get the result, we then
    have to multiply by x^120 to get the final value. For the
    next highest byte the result has to be multiplied by x^112
    and so on. But we can do this by accumulating the result
    in an accumulator starting with the result for the top
    byte.  We repeatedly multiply the accumulator value by
    x^8 and then add in (i.e. xor) the 16 bytes of the next
    lower byte in the buffer, stopping when we reach the
    lowest byte. This requires a 4096 byte table.
*/
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
{
	struct gf128mul_4k *t;
	int j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	t->t[128] = *g;
	for (j = 64; j > 0; j >>= 1)
		gf128mul_x_lle(&t->t[j], &t->t[j+j]);

	for (j = 2; j < 256; j += j)
		for (k = 1; k < j; ++k)
			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_lle);

struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
{
	struct gf128mul_4k *t;
	int j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	t->t[1] = *g;
	for (j = 1; j <= 64; j <<= 1)
		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);

	for (j = 2; j < 256; j += j)
		for (k = 1; k < j; ++k)
			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_bbe);

385
void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
386 387 388 389 390 391 392 393 394 395 396 397 398 399
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i = 15;

	*r = t->t[ap[15]];
	while (i--) {
		gf128mul_x8_lle(r);
		be128_xor(r, r, &t->t[ap[i]]);
	}
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_lle);

400
void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i = 0;

	*r = t->t[ap[0]];
	while (++i < 16) {
		gf128mul_x8_bbe(r);
		be128_xor(r, r, &t->t[ap[i]]);
	}
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_bbe);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");