flex_array.c 11 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Flexible array managed in PAGE_SIZE parts
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2009
 *
 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
 */

#include <linux/flex_array.h>
#include <linux/slab.h>
#include <linux/stddef.h>
26
#include <linux/export.h>
27
#include <linux/reciprocal_div.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41

struct flex_array_part {
	char elements[FLEX_ARRAY_PART_SIZE];
};

/*
 * If a user requests an allocation which is small
 * enough, we may simply use the space in the
 * flex_array->parts[] array to store the user
 * data.
 */
static inline int elements_fit_in_base(struct flex_array *fa)
{
	int data_size = fa->element_size * fa->total_nr_elements;
42
	if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
43 44 45 46 47 48 49 50
		return 1;
	return 0;
}

/**
 * flex_array_alloc - allocate a new flexible array
 * @element_size:	the size of individual elements in the array
 * @total:		total number of elements that this should hold
51
 * @flags:		page allocation flags to use for base array
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 *
 * Note: all locking must be provided by the caller.
 *
 * @total is used to size internal structures.  If the user ever
 * accesses any array indexes >=@total, it will produce errors.
 *
 * The maximum number of elements is defined as: the number of
 * elements that can be stored in a page times the number of
 * page pointers that we can fit in the base structure or (using
 * integer math):
 *
 * 	(PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
 *
 * Here's a table showing example capacities.  Note that the maximum
 * index that the get/put() functions is just nr_objects-1.   This
 * basically means that you get 4MB of storage on 32-bit and 2MB on
 * 64-bit.
 *
 *
 * Element size | Objects | Objects |
 * PAGE_SIZE=4k |  32-bit |  64-bit |
 * ---------------------------------|
74 75 76 77 78 79 80 81 82
 *      1 bytes | 4177920 | 2088960 |
 *      2 bytes | 2088960 | 1044480 |
 *      3 bytes | 1392300 |  696150 |
 *      4 bytes | 1044480 |  522240 |
 *     32 bytes |  130560 |   65408 |
 *     33 bytes |  126480 |   63240 |
 *   2048 bytes |    2040 |    1020 |
 *   2049 bytes |    1020 |     510 |
 *       void * | 1044480 |  261120 |
83 84 85 86 87
 *
 * Since 64-bit pointers are twice the size, we lose half the
 * capacity in the base structure.  Also note that no effort is made
 * to efficiently pack objects across page boundaries.
 */
88 89
struct flex_array *flex_array_alloc(int element_size, unsigned int total,
					gfp_t flags)
90 91
{
	struct flex_array *ret;
92
	int elems_per_part = 0;
93
	int max_size = 0;
94
	struct reciprocal_value reciprocal_elems = { 0 };
95

96 97 98 99 100
	if (element_size) {
		elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
		reciprocal_elems = reciprocal_value(elems_per_part);
		max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
	}
101 102 103 104 105 106 107 108 109

	/* max_size will end up 0 if element_size > PAGE_SIZE */
	if (total > max_size)
		return NULL;
	ret = kzalloc(sizeof(struct flex_array), flags);
	if (!ret)
		return NULL;
	ret->element_size = element_size;
	ret->total_nr_elements = total;
110 111
	ret->elems_per_part = elems_per_part;
	ret->reciprocal_elems = reciprocal_elems;
112
	if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
113
		memset(&ret->parts[0], FLEX_ARRAY_FREE,
114
						FLEX_ARRAY_BASE_BYTES_LEFT);
115 116
	return ret;
}
117
EXPORT_SYMBOL(flex_array_alloc);
118

119 120
static int fa_element_to_part_nr(struct flex_array *fa,
					unsigned int element_nr)
121
{
122 123 124 125 126
	/*
	 * if element_size == 0 we don't get here, so we never touch
	 * the zeroed fa->reciprocal_elems, which would yield invalid
	 * results
	 */
127
	return reciprocal_divide(element_nr, fa->reciprocal_elems);
128 129 130 131
}

/**
 * flex_array_free_parts - just free the second-level pages
132
 * @fa:		the flex array from which to free parts
133 134 135 136 137 138 139 140 141 142
 *
 * This is to be used in cases where the base 'struct flex_array'
 * has been statically allocated and should not be free.
 */
void flex_array_free_parts(struct flex_array *fa)
{
	int part_nr;

	if (elements_fit_in_base(fa))
		return;
143
	for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
144 145
		kfree(fa->parts[part_nr]);
}
146
EXPORT_SYMBOL(flex_array_free_parts);
147 148 149 150 151 152

void flex_array_free(struct flex_array *fa)
{
	flex_array_free_parts(fa);
	kfree(fa);
}
153
EXPORT_SYMBOL(flex_array_free);
154

155
static unsigned int index_inside_part(struct flex_array *fa,
156 157
					unsigned int element_nr,
					unsigned int part_nr)
158
{
159
	unsigned int part_offset;
160

161
	part_offset = element_nr - part_nr * fa->elems_per_part;
162 163 164 165 166 167 168 169
	return part_offset * fa->element_size;
}

static struct flex_array_part *
__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
{
	struct flex_array_part *part = fa->parts[part_nr];
	if (!part) {
170
		part = kmalloc(sizeof(struct flex_array_part), flags);
171 172
		if (!part)
			return NULL;
173 174 175
		if (!(flags & __GFP_ZERO))
			memset(part, FLEX_ARRAY_FREE,
				sizeof(struct flex_array_part));
176 177 178 179 180 181 182
		fa->parts[part_nr] = part;
	}
	return part;
}

/**
 * flex_array_put - copy data into the array at @element_nr
183
 * @fa:		the flex array to copy data into
184 185
 * @element_nr:	index of the position in which to insert
 * 		the new element.
186 187 188
 * @src:	address of data to copy into the array
 * @flags:	page allocation flags to use for array expansion
 *
189 190 191 192
 *
 * Note that this *copies* the contents of @src into
 * the array.  If you are trying to store an array of
 * pointers, make sure to pass in &ptr instead of ptr.
193 194
 * You may instead wish to use the flex_array_put_ptr()
 * helper function.
195 196 197
 *
 * Locking must be provided by the caller.
 */
198 199
int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
			gfp_t flags)
200
{
201
	int part_nr = 0;
202 203 204 205 206
	struct flex_array_part *part;
	void *dst;

	if (element_nr >= fa->total_nr_elements)
		return -ENOSPC;
207 208
	if (!fa->element_size)
		return 0;
209 210
	if (elements_fit_in_base(fa))
		part = (struct flex_array_part *)&fa->parts[0];
211
	else {
212
		part_nr = fa_element_to_part_nr(fa, element_nr);
213
		part = __fa_get_part(fa, part_nr, flags);
214 215 216
		if (!part)
			return -ENOMEM;
	}
217
	dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
218 219 220
	memcpy(dst, src, fa->element_size);
	return 0;
}
221
EXPORT_SYMBOL(flex_array_put);
222

223 224
/**
 * flex_array_clear - clear element in array at @element_nr
225
 * @fa:		the flex array of the element.
226 227 228 229 230 231
 * @element_nr:	index of the position to clear.
 *
 * Locking must be provided by the caller.
 */
int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
{
232
	int part_nr = 0;
233 234 235 236 237
	struct flex_array_part *part;
	void *dst;

	if (element_nr >= fa->total_nr_elements)
		return -ENOSPC;
238 239
	if (!fa->element_size)
		return 0;
240 241 242
	if (elements_fit_in_base(fa))
		part = (struct flex_array_part *)&fa->parts[0];
	else {
243
		part_nr = fa_element_to_part_nr(fa, element_nr);
244 245 246 247
		part = fa->parts[part_nr];
		if (!part)
			return -EINVAL;
	}
248
	dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
249
	memset(dst, FLEX_ARRAY_FREE, fa->element_size);
250 251
	return 0;
}
252
EXPORT_SYMBOL(flex_array_clear);
253

254 255
/**
 * flex_array_prealloc - guarantee that array space exists
256 257 258 259
 * @fa:			the flex array for which to preallocate parts
 * @start:		index of first array element for which space is allocated
 * @nr_elements:	number of elements for which space is allocated
 * @flags:		page allocation flags
260 261 262 263 264 265 266 267
 *
 * This will guarantee that no future calls to flex_array_put()
 * will allocate memory.  It can be used if you are expecting to
 * be holding a lock or in some atomic context while writing
 * data into the array.
 *
 * Locking must be provided by the caller.
 */
268
int flex_array_prealloc(struct flex_array *fa, unsigned int start,
269
			unsigned int nr_elements, gfp_t flags)
270 271 272 273
{
	int start_part;
	int end_part;
	int part_nr;
274
	unsigned int end;
275 276
	struct flex_array_part *part;

277 278 279 280 281 282 283
	if (!start && !nr_elements)
		return 0;
	if (start >= fa->total_nr_elements)
		return -ENOSPC;
	if (!nr_elements)
		return 0;

284 285
	end = start + nr_elements - 1;

286
	if (end >= fa->total_nr_elements)
287
		return -ENOSPC;
288 289
	if (!fa->element_size)
		return 0;
290 291 292 293 294 295 296 297 298 299 300
	if (elements_fit_in_base(fa))
		return 0;
	start_part = fa_element_to_part_nr(fa, start);
	end_part = fa_element_to_part_nr(fa, end);
	for (part_nr = start_part; part_nr <= end_part; part_nr++) {
		part = __fa_get_part(fa, part_nr, flags);
		if (!part)
			return -ENOMEM;
	}
	return 0;
}
301
EXPORT_SYMBOL(flex_array_prealloc);
302 303 304

/**
 * flex_array_get - pull data back out of the array
305
 * @fa:		the flex array from which to extract data
306 307 308 309
 * @element_nr:	index of the element to fetch from the array
 *
 * Returns a pointer to the data at index @element_nr.  Note
 * that this is a copy of the data that was passed in.  If you
310 311
 * are using this to store pointers, you'll get back &ptr.  You
 * may instead wish to use the flex_array_get_ptr helper.
312 313 314
 *
 * Locking must be provided by the caller.
 */
315
void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
316
{
317
	int part_nr = 0;
318 319
	struct flex_array_part *part;

320 321
	if (!fa->element_size)
		return NULL;
322 323 324 325
	if (element_nr >= fa->total_nr_elements)
		return NULL;
	if (elements_fit_in_base(fa))
		part = (struct flex_array_part *)&fa->parts[0];
326
	else {
327
		part_nr = fa_element_to_part_nr(fa, element_nr);
328
		part = fa->parts[part_nr];
329 330 331
		if (!part)
			return NULL;
	}
332
	return &part->elements[index_inside_part(fa, element_nr, part_nr)];
333
}
334
EXPORT_SYMBOL(flex_array_get);
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * flex_array_get_ptr - pull a ptr back out of the array
 * @fa:		the flex array from which to extract data
 * @element_nr:	index of the element to fetch from the array
 *
 * Returns the pointer placed in the flex array at element_nr using
 * flex_array_put_ptr().  This function should not be called if the
 * element in question was not set using the _put_ptr() helper.
 */
void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
{
	void **tmp;

	tmp = flex_array_get(fa, element_nr);
	if (!tmp)
		return NULL;

	return *tmp;
}
355
EXPORT_SYMBOL(flex_array_get_ptr);
356

357 358 359 360 361 362 363 364 365 366 367 368
static int part_is_free(struct flex_array_part *part)
{
	int i;

	for (i = 0; i < sizeof(struct flex_array_part); i++)
		if (part->elements[i] != FLEX_ARRAY_FREE)
			return 0;
	return 1;
}

/**
 * flex_array_shrink - free unused second-level pages
369
 * @fa:		the flex array to shrink
370 371 372 373 374 375 376 377 378 379 380 381
 *
 * Frees all second-level pages that consist solely of unused
 * elements.  Returns the number of pages freed.
 *
 * Locking must be provided by the caller.
 */
int flex_array_shrink(struct flex_array *fa)
{
	struct flex_array_part *part;
	int part_nr;
	int ret = 0;

382
	if (!fa->total_nr_elements || !fa->element_size)
383
		return 0;
384 385
	if (elements_fit_in_base(fa))
		return ret;
386
	for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
387 388 389 390 391 392 393 394 395 396 397
		part = fa->parts[part_nr];
		if (!part)
			continue;
		if (part_is_free(part)) {
			fa->parts[part_nr] = NULL;
			kfree(part);
			ret++;
		}
	}
	return ret;
}
398
EXPORT_SYMBOL(flex_array_shrink);