Kconfig 55 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

Linus Torvalds's avatar
Linus Torvalds committed
8
#
9
# async_tx api: hardware offloaded memory transfer/transform support
Linus Torvalds's avatar
Linus Torvalds committed
10
#
11
source "crypto/async_tx/Kconfig"
Linus Torvalds's avatar
Linus Torvalds committed
12

13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
Linus Torvalds's avatar
Linus Torvalds committed
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
29 30 31 32
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
33
	  this is.
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55 56
config CRYPTO_BLKCIPHER
	tristate
57
	select CRYPTO_BLKCIPHER2
58
	select CRYPTO_ALGAPI
59 60 61 62 63

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64
	select CRYPTO_WORKQUEUE
65

66 67
config CRYPTO_HASH
	tristate
68
	select CRYPTO_HASH2
69 70
	select CRYPTO_ALGAPI

71 72 73 74
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

75 76
config CRYPTO_RNG
	tristate
77
	select CRYPTO_RNG2
78 79
	select CRYPTO_ALGAPI

80 81 82 83
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

84 85 86 87
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

88 89 90 91 92 93 94 95 96
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

97 98 99 100 101 102 103 104 105
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

106 107 108
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
109
	select SGL_ALLOC
110 111 112 113 114 115

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

116 117
config CRYPTO_RSA
	tristate "RSA algorithm"
118
	select CRYPTO_AKCIPHER
119
	select CRYPTO_MANAGER
120 121 122 123 124
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

125 126 127 128 129 130 131
config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

132 133
config CRYPTO_ECDH
	tristate "ECDH algorithm"
134
	select CRYPTO_KPP
135
	select CRYPTO_RNG_DEFAULT
136 137
	help
	  Generic implementation of the ECDH algorithm
138

Herbert Xu's avatar
Herbert Xu committed
139 140
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
141
	select CRYPTO_MANAGER2
Herbert Xu's avatar
Herbert Xu committed
142 143 144 145
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

146 147 148 149 150
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
151
	select CRYPTO_AKCIPHER2
152
	select CRYPTO_KPP2
153
	select CRYPTO_ACOMP2
154

155 156
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
157
	depends on NET
158 159
	select CRYPTO_MANAGER
	help
160
	  Userspace configuration for cryptographic instantiations such as
161 162
	  cbc(aes).

163 164
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
165 166
	default y
	depends on CRYPTO_MANAGER2
167
	help
168 169
	  Disable run-time self tests that normally take place at
	  algorithm registration.
170

171
config CRYPTO_GF128MUL
172
	tristate "GF(2^128) multiplication functions"
173
	help
174 175 176 177 178
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
179

Linus Torvalds's avatar
Linus Torvalds committed
180 181
config CRYPTO_NULL
	tristate "Null algorithms"
182
	select CRYPTO_NULL2
Linus Torvalds's avatar
Linus Torvalds committed
183 184 185
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

186
config CRYPTO_NULL2
187
	tristate
188 189 190 191
	select CRYPTO_ALGAPI2
	select CRYPTO_BLKCIPHER2
	select CRYPTO_HASH2

192
config CRYPTO_PCRYPT
193 194
	tristate "Parallel crypto engine"
	depends on SMP
195 196 197 198 199 200 201
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

202 203 204
config CRYPTO_WORKQUEUE
       tristate

205 206 207
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
208
	select CRYPTO_HASH
209
	select CRYPTO_MANAGER
210
	select CRYPTO_WORKQUEUE
Linus Torvalds's avatar
Linus Torvalds committed
211
	help
212 213 214
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
Linus Torvalds's avatar
Linus Torvalds committed
215

216 217 218 219 220 221 222 223 224 225 226 227
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
228
	  their crypto request asynchronously to be processed by this daemon.
229

230 231 232 233 234 235
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
236
	select CRYPTO_NULL
Linus Torvalds's avatar
Linus Torvalds committed
237
	help
238 239
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
240

241 242 243
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
244
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
245
	help
246
	  Quick & dirty crypto test module.
Linus Torvalds's avatar
Linus Torvalds committed
247

248 249
config CRYPTO_SIMD
	tristate
250 251
	select CRYPTO_CRYPTD

252 253 254
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
255
	select CRYPTO_BLKCIPHER
256

257 258 259
config CRYPTO_ENGINE
	tristate

260
comment "Authenticated Encryption with Associated Data"
261

262 263 264
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
265
	select CRYPTO_HASH
266
	select CRYPTO_AEAD
Linus Torvalds's avatar
Linus Torvalds committed
267
	help
268
	  Support for Counter with CBC MAC. Required for IPsec.
Linus Torvalds's avatar
Linus Torvalds committed
269

270 271 272 273
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
274
	select CRYPTO_GHASH
275
	select CRYPTO_NULL
Linus Torvalds's avatar
Linus Torvalds committed
276
	help
277 278
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
Linus Torvalds's avatar
Linus Torvalds committed
279

280 281 282 283 284 285 286 287 288 289 290 291
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L
	tristate "AEGIS-128L AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256
	tristate "AEGIS-256 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-256 dedicated AEAD algorithm.

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.

config CRYPTO_AEGIS128L_AESNI_SSE2
	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.

config CRYPTO_AEGIS256_AESNI_SSE2
	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.

337 338 339 340 341 342
config CRYPTO_MORUS640
	tristate "MORUS-640 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-640 dedicated AEAD algorithm.

343 344 345 346 347 348 349 350
config CRYPTO_MORUS640_GLUE
	tristate "MORUS-640 AEAD algorithm (glue for SIMD optimizations)"
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
	  algorithm.

351 352 353 354 355 356 357 358
config CRYPTO_MORUS640_SSE2
	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS640_GLUE
	help
	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.

359 360 361 362 363 364
config CRYPTO_MORUS1280
	tristate "MORUS-1280 AEAD algorithm"
	select CRYPTO_AEAD
	help
	  Support for the MORUS-1280 dedicated AEAD algorithm.

365 366 367 368 369 370
config CRYPTO_MORUS1280_GLUE
	tristate "MORUS-1280 AEAD algorithm (glue for SIMD optimizations)"
	select CRYPTO_AEAD
	select CRYPTO_CRYPTD
	help
	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	  algorithm.

config CRYPTO_MORUS1280_SSE2
	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
	  algorithm.

config CRYPTO_MORUS1280_AVX2
	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
	select CRYPTO_MORUS1280_GLUE
	help
	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
389 390
	  algorithm.

391 392 393 394
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
395
	select CRYPTO_NULL
396
	select CRYPTO_RNG_DEFAULT
Linus Torvalds's avatar
Linus Torvalds committed
397
	help
398 399
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
Linus Torvalds's avatar
Linus Torvalds committed
400

401 402 403 404
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
405
	select CRYPTO_RNG_DEFAULT
406
	default m
407 408 409 410 411
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

412
comment "Block modes"
413

414 415
config CRYPTO_CBC
	tristate "CBC support"
416
	select CRYPTO_BLKCIPHER
417
	select CRYPTO_MANAGER
418
	help
419 420
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
421

422 423 424 425 426 427 428 429
config CRYPTO_CFB
	tristate "CFB support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

430 431
config CRYPTO_CTR
	tristate "CTR support"
432
	select CRYPTO_BLKCIPHER
433
	select CRYPTO_SEQIV
434
	select CRYPTO_MANAGER
435
	help
436
	  CTR: Counter mode
437 438
	  This block cipher algorithm is required for IPSec.

439 440 441 442 443 444 445 446 447 448 449 450 451
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
452 453 454
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
455 456 457
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
458

459
config CRYPTO_LRW
460
	tristate "LRW support"
461 462 463 464 465 466 467 468 469 470
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

471 472 473 474 475 476 477 478
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

479
config CRYPTO_XTS
480
	tristate "XTS support"
481 482
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
483
	select CRYPTO_ECB
484 485 486 487 488
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

489 490 491 492 493 494 495
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
	select CRYPTO_BLKCIPHER
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

496 497
comment "Hash modes"

498 499 500 501 502 503 504 505 506 507 508
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

509 510 511
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
512 513
	select CRYPTO_MANAGER
	help
514 515
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
516

517 518 519 520
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
521
	help
522 523 524 525
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
526

527 528 529 530 531 532 533 534 535 536 537
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

538
comment "Digest"
539

540 541
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
542
	select CRYPTO_HASH
543
	select CRC32
544
	help
545 546
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
547
	  See Castagnoli93.  Module will be crc32c.
548

549 550 551 552 553 554 555 556 557 558 559 560
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

561
config CRYPTO_CRC32C_VPMSUM
562
	tristate "CRC32c CRC algorithm (powerpc64)"
563
	depends on PPC64 && ALTIVEC
564 565 566 567 568 569 570 571
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


572 573 574 575 576 577 578 579 580
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

602 603 604 605 606 607 608 609 610
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

630 631 632 633 634 635 636 637 638
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

639 640 641 642 643 644 645 646
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

647 648 649
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
650
	select CRYPTO_HASH
651 652 653
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

654 655
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
656
	select CRYPTO_HASH
657 658 659 660 661 662 663
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

664
config CRYPTO_POLY1305_X86_64
665
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
666 667 668 669 670 671 672 673 674 675
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

676 677
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
678
	select CRYPTO_HASH
679
	help
680
	  MD4 message digest algorithm (RFC1320).
681

682 683
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
684
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
685
	help
686
	  MD5 message digest algorithm (RFC1321).
Linus Torvalds's avatar
Linus Torvalds committed
687

688 689 690 691 692 693 694 695 696
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

697 698 699 700 701 702 703 704
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

705 706 707 708 709 710 711 712 713
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

714 715
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
716
	select CRYPTO_HASH
717
	help
718 719 720 721
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
722

723
config CRYPTO_RMD128
724
	tristate "RIPEMD-128 digest algorithm"
725
	select CRYPTO_HASH
726 727
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
728

729
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
730
	  be used as a secure replacement for RIPEMD. For other use cases,
731
	  RIPEMD-160 should be used.
732

733
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
734
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
735 736

config CRYPTO_RMD160
737
	tristate "RIPEMD-160 digest algorithm"
738
	select CRYPTO_HASH
739 740
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
741

742 743 744 745
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
746

747 748
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
749

750
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
751
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
752 753

config CRYPTO_RMD256
754
	tristate "RIPEMD-256 digest algorithm"
755
	select CRYPTO_HASH
756 757 758 759 760
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
761

762
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
763
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
764 765

config CRYPTO_RMD320
766
	tristate "RIPEMD-320 digest algorithm"
767
	select CRYPTO_HASH
768 769 770 771 772
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
773

774
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
775
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
776

777 778
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
779
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
780
	help
781
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
782

783
config CRYPTO_SHA1_SSSE3
784
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
785 786 787 788 789 790
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
791 792
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
793

794
config CRYPTO_SHA256_SSSE3
795
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
796 797 798 799 800 801 802
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
803 804
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
805 806 807 808 809 810 811 812 813 814

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
815 816
	  version 2 (AVX2) instructions, when available.

817 818 819 820 821 822 823 824 825
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

826 827 828 829 830 831 832 833 834
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

835 836 837 838 839 840 841
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

842 843 844 845 846 847 848
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
config CRYPTO_SHA256_MB
	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
config CRYPTO_SHA512_MB
        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
        depends on X86 && 64BIT
        select CRYPTO_SHA512
        select CRYPTO_HASH
        select CRYPTO_MCRYPTD
        help
          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
          using multi-buffer technique.  This algorithm computes on
          multiple data lanes concurrently with SIMD instructions for
          better throughput.  It should not be enabled by default but
          used when there is significant amount of work to keep the keep
          the data lanes filled to get performance benefit.  If the data
          lanes remain unfilled, a flush operation will be initiated to
          process the crypto jobs, adding a slight latency.

897 898
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
899
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
900
	help
901
	  SHA256 secure hash standard (DFIPS 180-2).
Linus Torvalds's avatar
Linus Torvalds committed
902

903 904
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
905

906 907
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
908

909 910 911 912 913 914 915 916 917
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

918 919 920 921 922 923 924 925 926
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

927 928 929 930 931 932 933 934 935
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

936 937
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
938
	select CRYPTO_HASH
939
	help
940
	  SHA512 secure hash standard (DFIPS 180-2).
941

942 943
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
944

945 946
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
947

948 949 950 951 952 953 954 955 956
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

957 958 959 960 961 962 963 964 965
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

966 967 968 969 970 971 972 973 974 975
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

976 977 978 979 980 981 982 983 984 985 986
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

987 988
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
989
	select CRYPTO_HASH
990
	help
991
	  Tiger hash algorithm 192, 160 and 128-bit hashes
992

993 994 995
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
996 997

	  See also:
998
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
999

1000 1001
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1002
	select CRYPTO_HASH
Linus Torvalds's avatar
Linus Torvalds committed
1003
	help
1004
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
Linus Torvalds's avatar
Linus Torvalds committed
1005

1006 1007
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
Linus Torvalds's avatar
Linus Torvalds committed
1008 1009

	  See also:
1010
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1011

1012 1013
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
1014
	depends on X86 && 64BIT
1015 1016 1017 1018 1019
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

1020
comment "Ciphers"
Linus Torvalds's avatar
Linus Torvalds committed
1021 1022 1023

config CRYPTO_AES
	tristate "AES cipher algorithms"
1024
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1025
	help
1026
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
Linus Torvalds's avatar
Linus Torvalds committed
1027 1028 1029
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1030 1031 1032 1033 1034 1035 1036
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
Linus Torvalds's avatar
Linus Torvalds committed
1037

1038
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
1039 1040 1041

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
	  block.

Linus Torvalds's avatar
Linus Torvalds committed
1059 1060
config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
1061 1062
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
1063
	select CRYPTO_AES
Linus Torvalds's avatar
Linus Torvalds committed
1064
	help
1065
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
Linus Torvalds's avatar
Linus Torvalds committed
1066 1067 1068
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1069 1070 1071 1072 1073 1074 1075
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
Linus Torvalds's avatar
Linus Torvalds committed
1076

1077
	  The AES specifies three key sizes: 128, 192 and 256 bits
1078 1079 1080 1081 1082

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
1083 1084
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
1085
	select CRYPTO_AES
1086
	help
1087
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1088 1089 1090
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1091 1092 1093
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
1105
	depends on X86
1106
	select CRYPTO_AEAD
1107 1108
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
1109
	select CRYPTO_ALGAPI
1110
	select CRYPTO_BLKCIPHER
1111
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1112
	select CRYPTO_SIMD
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1123 1124 1125 1126
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
1127

1128
	  The AES specifies three key sizes: 128, 192 and 256 bits
Linus Torvalds's avatar
Linus Torvalds committed
1129 1130 1131

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1132 1133 1134 1135
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1189 1190
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1191 1192 1193

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1194
	select CRYPTO_BLKCIPHER
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1206
	select CRYPTO_BLOWFISH_COMMON
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1217 1218 1219 1220 1221 1222 1223 1224 1225
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1226 1227
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1228
	depends on X86 && 64BIT
1229
	select CRYPTO_BLKCIPHER
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1256 1257
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1258
	depends on X86 && 64BIT
1259
	depends on CRYPTO
1260
	select CRYPTO_BLKCIPHER
1261
	select CRYPTO_GLUE_HELPER_X86
1262 1263 1264 1265 1266 1267 1268 1269 1270
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1271 1272 1273 1274 1275 1276
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1277
	select CRYPTO_BLKCIPHER
1278
	select CRYPTO_CAMELLIA_X86_64
1279 1280
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1291 1292
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1325 1326 1327 1328 1329 1330
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

Linus Torvalds's avatar
Linus Torvalds committed
1331 1332
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1333
	select CRYPTO_ALGAPI
1334
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1335 1336 1337 1338
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1339 1340 1341
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1342
	select CRYPTO_BLKCIPHER
1343
	select CRYPTO_CAST5
1344 1345
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1346 1347 1348 1349 1350 1351 1352
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

Linus Torvalds's avatar
Linus Torvalds committed
1353 1354
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1355
	select CRYPTO_ALGAPI
1356
	select CRYPTO_CAST_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1357 1358 1359 1360
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1361 1362 1363
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1364
	select CRYPTO_BLKCIPHER
1365
	select CRYPTO_CAST6
1366 1367 1368
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1369 1370 1371 1372 1373 1374 1375 1376
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1377 1378
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1379
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1380
	help
1381
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1382

1383 1384
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1385
	depends on SPARC64
1386 1387 1388 1389 1390 1391
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1392 1393 1394
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1395
	select CRYPTO_BLKCIPHER
1396 1397 1398 1399 1400 1401 1402 1403 1404
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1405 1406
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1407
	select CRYPTO_ALGAPI
1408
	select CRYPTO_BLKCIPHER
Linus Torvalds's avatar
Linus Torvalds committed
1409
	help
1410
	  FCrypt algorithm used by RxRPC.
Linus Torvalds's avatar
Linus Torvalds committed
1411 1412 1413

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1414
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1415 1416 1417 1418 1419 1420 1421 1422
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1423
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
Linus Torvalds's avatar
Linus Torvalds committed
1424

1425
config CRYPTO_SALSA20
1426
	tristate "Salsa20 stream cipher algorithm"
1427 1428 1429 1430 1431 1432
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1433 1434 1435 1436 1437

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1438
	tristate "Salsa20 stream cipher algorithm (i586)"
1439 1440
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
1441
	select CRYPTO_SALSA20
1442 1443 1444 1445 1446
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1447 1448 1449 1450 1451

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1452
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1453 1454
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
1455
	select CRYPTO_SALSA20
1456 1457 1458 1459 1460
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1461 1462 1463

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
Linus Torvalds's avatar
Linus Torvalds committed
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1478
config CRYPTO_CHACHA20_X86_64
1479
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1493 1494
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1495
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1496
	help
1497
	  SEED cipher algorithm (RFC4269).
Linus Torvalds's avatar
Linus Torvalds committed
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1509
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1510
	help
1511
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Linus Torvalds's avatar
Linus Torvalds committed
1512

1513 1514 1515 1516 1517 1518 1519
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1520 1521 1522
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1523
	select CRYPTO_BLKCIPHER
1524
	select CRYPTO_GLUE_HELPER_X86
1525
	select CRYPTO_SERPENT
1526
	select CRYPTO_SIMD
1527 1528 1529 1530 1531 1532
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1533
	  This module provides Serpent cipher algorithm that processes eight
1534 1535 1536 1537 1538
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1539 1540 1541
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1542
	select CRYPTO_BLKCIPHER
1543
	select CRYPTO_GLUE_HELPER_X86
1544
	select CRYPTO_SERPENT
1545
	select CRYPTO_SIMD
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1557 1558 1559 1560

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1561
	select CRYPTO_BLKCIPHER
1562
	select CRYPTO_GLUE_HELPER_X86
1563
	select CRYPTO_SERPENT
1564
	select CRYPTO_SIMD
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
config CRYPTO_SPECK
	tristate "Speck cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Speck is a lightweight block cipher that is tuned for optimal
	  performance in software (rather than hardware).

	  Speck may not be as secure as AES, and should only be used on systems
	  where AES is not fast enough.

	  See also: <https://eprint.iacr.org/2013/404.pdf>

	  If unsure, say N.

1633 1634
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1635
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
1636
	help
1637
	  TEA cipher algorithm.
Linus Torvalds's avatar
Linus Torvalds committed
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1652
	select CRYPTO_ALGAPI
1653
	select CRYPTO_TWOFISH_COMMON
1654
	help
1655
	  Twofish cipher algorithm.
1656

1657 1658 1659 1660
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1683 1684

	  See also:
1685
	  <http://www.schneier.com/twofish.html>
1686

1687 1688 1689
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1690
	select CRYPTO_ALGAPI
1691
	select CRYPTO_TWOFISH_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
1692
	help
1693
	  Twofish cipher algorithm (x86_64).