1. 10 Mar, 2017 1 commit
    • Andrea Arcangeli's avatar
      userfaultfd: non-cooperative: rollback userfaultfd_exit · dd0db88d
      Andrea Arcangeli authored
      Patch series "userfaultfd non-cooperative further update for 4.11 merge
      window".
      
      Unfortunately I noticed one relevant bug in userfaultfd_exit while doing
      more testing.  I've been doing testing before and this was also tested
      by kbuild bot and exercised by the selftest, but this bug never
      reproduced before.
      
      I dropped userfaultfd_exit as result.  I dropped it because of
      implementation difficulty in receiving signals in __mmput and because I
      think -ENOSPC as result from the background UFFDIO_COPY should be enough
      already.
      
      Before I decided to remove userfaultfd_exit, I noticed userfaultfd_exit
      wasn't exercised by the selftest and when I tried to exercise it, after
      moving it to a more correct place in __mmput where it would make more
      sense and where the vma list is stable, it resulted in the
      event_wait_completion in D state.  So then I added the second patch to
      be sure even if we call userfaultfd_event_wait_completion too late
      during task exit(), we won't risk to generate tasks in D state.  The
      same check exists in handle_userfault() for the same reason, except it
      makes a difference there, while here is just a robustness check and it's
      run under WARN_ON_ONCE.
      
      While looking at the userfaultfd_event_wait_completion() function I
      looked back at its callers too while at it and I think it's not ok to
      stop executing dup_fctx on the fcs list because we relay on
      userfaultfd_event_wait_completion to execute
      userfaultfd_ctx_put(fctx->orig) which is paired against
      userfaultfd_ctx_get(fctx->orig) in dup_userfault just before
      list_add(fcs).  This change only takes care of fctx->orig but this area
      also needs further review looking for similar problems in fctx->new.
      
      The only patch that is urgent is the first because it's an use after
      free during a SMP race condition that affects all processes if
      CONFIG_USERFAULTFD=y.  Very hard to reproduce though and probably
      impossible without SLUB poisoning enabled.
      
      This patch (of 3):
      
      I once reproduced this oops with the userfaultfd selftest, it's not
      easily reproducible and it requires SLUB poisoning to reproduce.
      
          general protection fault: 0000 [#1] SMP
          Modules linked in:
          CPU: 2 PID: 18421 Comm: userfaultfd Tainted: G               ------------ T 3.10.0+ #15
          Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.1-0-g8891697-prebuilt.qemu-project.org 04/01/2014
          task: ffff8801f83b9440 ti: ffff8801f833c000 task.ti: ffff8801f833c000
          RIP: 0010:[<ffffffff81451299>]  [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0
          RSP: 0018:ffff8801f833fe80  EFLAGS: 00010202
          RAX: ffff8801f833ffd8 RBX: 6b6b6b6b6b6b6b6b RCX: ffff8801f83b9440
          RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800baf18600
          RBP: ffff8801f833fee8 R08: 0000000000000000 R09: 0000000000000001
          R10: 0000000000000000 R11: ffffffff8127ceb3 R12: 0000000000000000
          R13: ffff8800baf186b0 R14: ffff8801f83b99f8 R15: 00007faed746c700
          FS:  0000000000000000(0000) GS:ffff88023fc80000(0000) knlGS:0000000000000000
          CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
          CR2: 00007faf0966f028 CR3: 0000000001bc6000 CR4: 00000000000006e0
          DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
          DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
          Call Trace:
            do_exit+0x297/0xd10
            SyS_exit+0x17/0x20
            tracesys+0xdd/0xe2
          Code: 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 48 83 ec 58 48 8b 1f 48 85 db 75 11 eb 73 66 0f 1f 44 00 00 48 8b 5b 10 48 85 db 74 64 <4c> 8b a3 b8 00 00 00 4d 85 e4 74 eb 41 f6 84 24 2c 01 00 00 80
          RIP  [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0
           RSP <ffff8801f833fe80>
          ---[ end trace 9fecd6dcb442846a ]---
      
      In the debugger I located the "mm" pointer in the stack and walking
      mm->mmap->vm_next through the end shows the vma->vm_next list is fully
      consistent and it is null terminated list as expected.  So this has to
      be an SMP race condition where userfaultfd_exit was running while the
      vma list was being modified by another CPU.
      
      When userfaultfd_exit() run one of the ->vm_next pointers pointed to
      SLAB_POISON (RBX is the vma pointer and is 0x6b6b..).
      
      The reason is that it's not running in __mmput but while there are still
      other threads running and it's not holding the mmap_sem (it can't as it
      has to wait the even to be received by the manager).  So this is an use
      after free that was happening for all processes.
      
      One more implementation problem aside from the race condition:
      userfaultfd_exit has really to check a flag in mm->flags before walking
      the vma or it's going to slowdown the exit() path for regular tasks.
      
      One more implementation problem: at that point signals can't be
      delivered so it would also create a task in D state if the manager
      doesn't read the event.
      
      The major design issue: it overall looks superfluous as the manager can
      check for -ENOSPC in the background transfer:
      
      	if (mmget_not_zero(ctx->mm)) {
      [..]
      	} else {
      		return -ENOSPC;
      	}
      
      It's safer to roll it back and re-introduce it later if at all.
      
      [rppt@linux.vnet.ibm.com: documentation fixup after removal of UFFD_EVENT_EXIT]
        Link: http://lkml.kernel.org/r/1488345437-4364-1-git-send-email-rppt@linux.vnet.ibm.com
      Link: http://lkml.kernel.org/r/20170224181957.19736-2-aarcange@redhat.comSigned-off-by: default avatarAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: default avatarMike Rapoport <rppt@linux.vnet.ibm.com>
      Acked-by: default avatarMike Rapoport <rppt@linux.vnet.ibm.com>
      Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
      Cc: Mike Kravetz <mike.kravetz@oracle.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      dd0db88d
  2. 28 Feb, 2017 1 commit
  3. 25 Feb, 2017 3 commits
  4. 23 Feb, 2017 1 commit
    • David Rientjes's avatar
      mm, thp: add new defer+madvise defrag option · 21440d7e
      David Rientjes authored
      There is no thp defrag option that currently allows MADV_HUGEPAGE
      regions to do direct compaction and reclaim while all other thp
      allocations simply trigger kswapd and kcompactd in the background and
      fail immediately.
      
      The "defer" setting simply triggers background reclaim and compaction
      for all regions, regardless of MADV_HUGEPAGE, which makes it unusable
      for our userspace where MADV_HUGEPAGE is being used to indicate the
      application is willing to wait for work for thp memory to be available.
      
      The "madvise" setting will do direct compaction and reclaim for these
      MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the
      background for anybody else.
      
      For reasonable usage, there needs to be a mesh between the two options.
      This patch introduces a fifth mode, "defer+madvise", that will do direct
      reclaim and compaction for MADV_HUGEPAGE regions and trigger background
      reclaim and compaction for everybody else so that hugepages may be
      available in the near future.
      
      A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE
      regions as part of the "defer" mode, making it a very powerful setting
      and avoids breaking userspace, was offered:
           http://marc.info/?t=148236612700003
      This additional mode is a compromise.
      
      A second proposal to allow both "defer" and "madvise" to be selected at
      the same time was also offered:
           http://marc.info/?t=148357345300001.
      This is possible, but there was a concern that it might break existing
      userspaces the parse the output of the defrag mode, so the fifth option
      was introduced instead.
      
      This patch also cleans up the helper function for storing to "enabled"
      and "defrag" since the former supports three modes while the latter
      supports five and triple_flag_store() was getting unnecessarily messy.
      
      Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.comSigned-off-by: default avatarDavid Rientjes <rientjes@google.com>
      Acked-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      21440d7e
  5. 26 Jan, 2017 1 commit
  6. 11 Jan, 2017 1 commit
  7. 13 Dec, 2016 1 commit
  8. 24 Oct, 2016 1 commit
  9. 03 Aug, 2016 1 commit
  10. 26 Jul, 2016 4 commits
    • Minchan Kim's avatar
      mm: fix build warnings in <linux/compaction.h> · dd4123f3
      Minchan Kim authored
      Randy reported below build error.
      
      > In file included from ../include/linux/balloon_compaction.h:48:0,
      >                  from ../mm/balloon_compaction.c:11:
      > ../include/linux/compaction.h:237:51: warning: 'struct node' declared inside parameter list [enabled by default]
      >  static inline int compaction_register_node(struct node *node)
      > ../include/linux/compaction.h:237:51: warning: its scope is only this definition or declaration, which is probably not what you want [enabled by default]
      > ../include/linux/compaction.h:242:54: warning: 'struct node' declared inside parameter list [enabled by default]
      >  static inline void compaction_unregister_node(struct node *node)
      >
      
      It was caused by non-lru page migration which needs compaction.h but
      compaction.h doesn't include any header to be standalone.
      
      I think proper header for non-lru page migration is migrate.h rather
      than compaction.h because migrate.h has already headers needed to work
      non-lru page migration indirectly like isolate_mode_t, migrate_mode
      MIGRATEPAGE_SUCCESS.
      
      [akpm@linux-foundation.org: revert mm-balloon-use-general-non-lru-movable-page-feature-fix.patch temp fix]
      Link: http://lkml.kernel.org/r/20160610003304.GE29779@bboxSigned-off-by: default avatarMinchan Kim <minchan@kernel.org>
      Reported-by: default avatarRandy Dunlap <rdunlap@infradead.org>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
      Cc: Rafael Aquini <aquini@redhat.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      dd4123f3
    • Kirill A. Shutemov's avatar
    • Kirill A. Shutemov's avatar
    • Minchan Kim's avatar
      mm: migrate: support non-lru movable page migration · bda807d4
      Minchan Kim authored
      We have allowed migration for only LRU pages until now and it was enough
      to make high-order pages.  But recently, embedded system(e.g., webOS,
      android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
      have seen several reports about troubles of small high-order allocation.
      For fixing the problem, there were several efforts (e,g,.  enhance
      compaction algorithm, SLUB fallback to 0-order page, reserved memory,
      vmalloc and so on) but if there are lots of non-movable pages in system,
      their solutions are void in the long run.
      
      So, this patch is to support facility to change non-movable pages with
      movable.  For the feature, this patch introduces functions related to
      migration to address_space_operations as well as some page flags.
      
      If a driver want to make own pages movable, it should define three
      functions which are function pointers of struct
      address_space_operations.
      
      1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
      
      What VM expects on isolate_page function of driver is to return *true*
      if driver isolates page successfully.  On returing true, VM marks the
      page as PG_isolated so concurrent isolation in several CPUs skip the
      page for isolation.  If a driver cannot isolate the page, it should
      return *false*.
      
      Once page is successfully isolated, VM uses page.lru fields so driver
      shouldn't expect to preserve values in that fields.
      
      2. int (*migratepage) (struct address_space *mapping,
      		struct page *newpage, struct page *oldpage, enum migrate_mode);
      
      After isolation, VM calls migratepage of driver with isolated page.  The
      function of migratepage is to move content of the old page to new page
      and set up fields of struct page newpage.  Keep in mind that you should
      indicate to the VM the oldpage is no longer movable via
      __ClearPageMovable() under page_lock if you migrated the oldpage
      successfully and returns 0.  If driver cannot migrate the page at the
      moment, driver can return -EAGAIN.  On -EAGAIN, VM will retry page
      migration in a short time because VM interprets -EAGAIN as "temporal
      migration failure".  On returning any error except -EAGAIN, VM will give
      up the page migration without retrying in this time.
      
      Driver shouldn't touch page.lru field VM using in the functions.
      
      3. void (*putback_page)(struct page *);
      
      If migration fails on isolated page, VM should return the isolated page
      to the driver so VM calls driver's putback_page with migration failed
      page.  In this function, driver should put the isolated page back to the
      own data structure.
      
      4. non-lru movable page flags
      
      There are two page flags for supporting non-lru movable page.
      
      * PG_movable
      
      Driver should use the below function to make page movable under
      page_lock.
      
      	void __SetPageMovable(struct page *page, struct address_space *mapping)
      
      It needs argument of address_space for registering migration family
      functions which will be called by VM.  Exactly speaking, PG_movable is
      not a real flag of struct page.  Rather than, VM reuses page->mapping's
      lower bits to represent it.
      
      	#define PAGE_MAPPING_MOVABLE 0x2
      	page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
      
      so driver shouldn't access page->mapping directly.  Instead, driver
      should use page_mapping which mask off the low two bits of page->mapping
      so it can get right struct address_space.
      
      For testing of non-lru movable page, VM supports __PageMovable function.
      However, it doesn't guarantee to identify non-lru movable page because
      page->mapping field is unified with other variables in struct page.  As
      well, if driver releases the page after isolation by VM, page->mapping
      doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
      __ClearPageMovable).  But __PageMovable is cheap to catch whether page
      is LRU or non-lru movable once the page has been isolated.  Because LRU
      pages never can have PAGE_MAPPING_MOVABLE in page->mapping.  It is also
      good for just peeking to test non-lru movable pages before more
      expensive checking with lock_page in pfn scanning to select victim.
      
      For guaranteeing non-lru movable page, VM provides PageMovable function.
      Unlike __PageMovable, PageMovable functions validates page->mapping and
      mapping->a_ops->isolate_page under lock_page.  The lock_page prevents
      sudden destroying of page->mapping.
      
      Driver using __SetPageMovable should clear the flag via
      __ClearMovablePage under page_lock before the releasing the page.
      
      * PG_isolated
      
      To prevent concurrent isolation among several CPUs, VM marks isolated
      page as PG_isolated under lock_page.  So if a CPU encounters PG_isolated
      non-lru movable page, it can skip it.  Driver doesn't need to manipulate
      the flag because VM will set/clear it automatically.  Keep in mind that
      if driver sees PG_isolated page, it means the page have been isolated by
      VM so it shouldn't touch page.lru field.  PG_isolated is alias with
      PG_reclaim flag so driver shouldn't use the flag for own purpose.
      
      [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
        Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
      Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.orgSigned-off-by: default avatarGioh Kim <gi-oh.kim@profitbricks.com>
      Signed-off-by: default avatarMinchan Kim <minchan@kernel.org>
      Signed-off-by: default avatarGanesh Mahendran <opensource.ganesh@gmail.com>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Rafael Aquini <aquini@redhat.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: John Einar Reitan <john.reitan@foss.arm.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      bda807d4
  11. 21 May, 2016 2 commits
  12. 20 May, 2016 1 commit
    • Joonsoo Kim's avatar
      mm: rename _count, field of the struct page, to _refcount · 0139aa7b
      Joonsoo Kim authored
      Many developers already know that field for reference count of the
      struct page is _count and atomic type.  They would try to handle it
      directly and this could break the purpose of page reference count
      tracepoint.  To prevent direct _count modification, this patch rename it
      to _refcount and add warning message on the code.  After that, developer
      who need to handle reference count will find that field should not be
      accessed directly.
      
      [akpm@linux-foundation.org: fix comments, per Vlastimil]
      [akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
      [sfr@canb.auug.org.au: sync ethernet driver changes]
      Signed-off-by: default avatarJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: default avatarStephen Rothwell <sfr@canb.auug.org.au>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Johannes Berg <johannes@sipsolutions.net>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Sunil Goutham <sgoutham@cavium.com>
      Cc: Chris Metcalf <cmetcalf@mellanox.com>
      Cc: Manish Chopra <manish.chopra@qlogic.com>
      Cc: Yuval Mintz <yuval.mintz@qlogic.com>
      Cc: Tariq Toukan <tariqt@mellanox.com>
      Cc: Saeed Mahameed <saeedm@mellanox.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      0139aa7b
  13. 14 May, 2016 1 commit
  14. 28 Apr, 2016 1 commit
  15. 15 Apr, 2016 1 commit
  16. 17 Mar, 2016 2 commits
    • Mel Gorman's avatar
      mm: thp: set THP defrag by default to madvise and add a stall-free defrag option · 444eb2a4
      Mel Gorman authored
      THP defrag is enabled by default to direct reclaim/compact but not wake
      kswapd in the event of a THP allocation failure.  The problem is that
      THP allocation requests potentially enter reclaim/compaction.  This
      potentially incurs a severe stall that is not guaranteed to be offset by
      reduced TLB misses.  While there has been considerable effort to reduce
      the impact of reclaim/compaction, it is still a high cost and workloads
      that should fit in memory fail to do so.  Specifically, a simple
      anon/file streaming workload will enter direct reclaim on NUMA at least
      even though the working set size is 80% of RAM.  It's been years and
      it's time to throw in the towel.
      
      First, this patch defines THP defrag as follows;
      
       madvise: A failed allocation will direct reclaim/compact if the application requests it
       never:   Neither reclaim/compact nor wake kswapd
       defer:   A failed allocation will wake kswapd/kcompactd
       always:  A failed allocation will direct reclaim/compact (historical behaviour)
                khugepaged defrag will enter direct/reclaim but not wake kswapd.
      
      Next it sets the default defrag option to be "madvise" to only enter
      direct reclaim/compaction for applications that specifically requested
      it.
      
      Lastly, it removes a check from the page allocator slowpath that is
      related to __GFP_THISNODE to allow "defer" to work.  The callers that
      really cares are slub/slab and they are updated accordingly.  The slab
      one may be surprising because it also corrects a comment as kswapd was
      never woken up by that path.
      
      This means that a THP fault will no longer stall for most applications
      by default and the ideal for most users that get THP if they are
      immediately available.  There are still options for users that prefer a
      stall at startup of a new application by either restoring historical
      behaviour with "always" or pick a half-way point with "defer" where
      kswapd does some of the work in the background and wakes kcompactd if
      necessary.  THP defrag for khugepaged remains enabled and will enter
      direct/reclaim but no wakeup kswapd or kcompactd.
      
      After this patch a THP allocation failure will quickly fallback and rely
      on khugepaged to recover the situation at some time in the future.  In
      some cases, this will reduce THP usage but the benefit of THP is hard to
      measure and not a universal win where as a stall to reclaim/compaction
      is definitely measurable and can be painful.
      
      The first test for this is using "usemem" to read a large file and write
      a large anonymous mapping (to avoid the zero page) multiple times.  The
      total size of the mappings is 80% of RAM and the benchmark simply
      measures how long it takes to complete.  It uses multiple threads to see
      if that is a factor.  On UMA, the performance is almost identical so is
      not reported but on NUMA, we see this
      
      usemem
                                         4.4.0                 4.4.0
                                kcompactd-v1r1         nodefrag-v1r3
      Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
      Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
      Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
      Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
      Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
      Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
      Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
      Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
      Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
      Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
      Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
      Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
      Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
      Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)
      
      For a single thread, the benchmark completes 43.23% faster with this
      patch applied with smaller benefits as the thread increases.  Similar,
      notice the large reduction in most cases in system CPU usage.  The
      overall CPU time is
      
                     4.4.0       4.4.0
              kcompactd-v1r1 nodefrag-v1r3
      User        10357.65    10438.33
      System       3988.88     3543.94
      Elapsed      2203.01     1634.41
      
      Which is substantial. Now, the reclaim figures
      
                                       4.4.0       4.4.0
                                kcompactd-v1r1nodefrag-v1r3
      Minor Faults                 128458477   278352931
      Major Faults                   2174976         225
      Swap Ins                      16904701           0
      Swap Outs                     17359627           0
      Allocation stalls                43611           0
      DMA allocs                           0           0
      DMA32 allocs                  19832646    19448017
      Normal allocs                614488453   580941839
      Movable allocs                       0           0
      Direct pages scanned          24163800           0
      Kswapd pages scanned                 0           0
      Kswapd pages reclaimed               0           0
      Direct pages reclaimed        20691346           0
      Compaction stalls                42263           0
      Compaction success                 938           0
      Compaction failures              41325           0
      
      This patch eliminates almost all swapping and direct reclaim activity.
      There is still overhead but it's from NUMA balancing which does not
      identify that it's pointless trying to do anything with this workload.
      
      I also tried the thpscale benchmark which forces a corner case where
      compaction can be used heavily and measures the latency of whether base
      or huge pages were used
      
      thpscale Fault Latencies
                                             4.4.0                 4.4.0
                                    kcompactd-v1r1         nodefrag-v1r3
      Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
      Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
      Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
      Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
      Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
      Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
      Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
      Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
      Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
      Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
      Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
      Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
      Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
      Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
      Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
      Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
      Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
      Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)
      
      The average time to fault pages is substantially reduced in the majority
      of caseds but with the obvious caveat that fewer THPs are actually used
      in this adverse workload
      
                                         4.4.0                 4.4.0
                                kcompactd-v1r1         nodefrag-v1r3
      Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
      Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
      Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
      Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
      Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
      Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
      Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
      Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
      Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)
      
                                       4.4.0       4.4.0
                                kcompactd-v1r1nodefrag-v1r3
      Minor Faults                  37429143    47564000
      Major Faults                      1916        1558
      Swap Ins                          1466        1079
      Swap Outs                      2936863      149626
      Allocation stalls                62510           3
      DMA allocs                           0           0
      DMA32 allocs                   6566458     6401314
      Normal allocs                216361697   216538171
      Movable allocs                       0           0
      Direct pages scanned          25977580       17998
      Kswapd pages scanned                 0     3638931
      Kswapd pages reclaimed               0      207236
      Direct pages reclaimed         8833714          88
      Compaction stalls               103349           5
      Compaction success                 270           4
      Compaction failures             103079           1
      
      Note again that while this does swap as it's an aggressive workload, the
      direct relcim activity and allocation stalls is substantially reduced.
      There is some kswapd activity but ftrace showed that the kswapd activity
      was due to normal wakeups from 4K pages being allocated.
      Compaction-related stalls and activity are almost eliminated.
      
      I also tried the stutter benchmark.  For this, I do not have figures for
      NUMA but it's something that does impact UMA so I'll report what is
      available
      
      stutter
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
      Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
      1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
      2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
      3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
      Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
      Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
      Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
      Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
      Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
      Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)
      
      This benchmark is trying to fault an anonymous mapping while there is a
      heavy IO load -- a scenario that desktop users used to complain about
      frequently.  This shows a mix because the ideal case of mapping with THP
      is not hit as often.  However, note that 99% of the mappings complete
      13.79% faster.  The CPU usage here is particularly interesting
      
                     4.4.0       4.4.0
              kcompactd-v1r1nodefrag-v1r3
      User           67.50        0.99
      System       1327.88       91.30
      Elapsed      2079.00     2128.98
      
      And once again we look at the reclaim figures
      
                                       4.4.0       4.4.0
                                kcompactd-v1r1nodefrag-v1r3
      Minor Faults                 335241922  1314582827
      Major Faults                       715         819
      Swap Ins                             0           0
      Swap Outs                            0           0
      Allocation stalls               532723           0
      DMA allocs                           0           0
      DMA32 allocs                1822364341  1177950222
      Normal allocs               1815640808  1517844854
      Movable allocs                       0           0
      Direct pages scanned          21892772           0
      Kswapd pages scanned          20015890    41879484
      Kswapd pages reclaimed        19961986    41822072
      Direct pages reclaimed        21892741           0
      Compaction stalls              1065755           0
      Compaction success                 514           0
      Compaction failures            1065241           0
      
      Allocation stalls and all direct reclaim activity is eliminated as well
      as compaction-related stalls.
      
      THP gives impressive gains in some cases but only if they are quickly
      available.  We're not going to reach the point where they are completely
      free so lets take the costs out of the fast paths finally and defer the
      cost to kswapd, kcompactd and khugepaged where it belongs.
      Signed-off-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Acked-by: default avatarRik van Riel <riel@redhat.com>
      Acked-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      444eb2a4
    • Kirill A. Shutemov's avatar
      thp, vmstats: count deferred split events · f9719a03
      Kirill A. Shutemov authored
      Count how many times we put a THP in split queue.  Currently, it happens
      on partial unmap of a THP.
      
      Rapidly growing value can indicate that an application behaves
      unfriendly wrt THP: often fault in huge page and then unmap part of it.
      This leads to unnecessary memory fragmentation and the application may
      require tuning.
      
      The event also can help with debugging kernel [mis-]behaviour.
      Signed-off-by: default avatarKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      f9719a03
  17. 15 Mar, 2016 2 commits
  18. 16 Jan, 2016 1 commit
  19. 10 Dec, 2015 1 commit
  20. 07 Nov, 2015 2 commits
    • Kirill A. Shutemov's avatar
      mm: make compound_head() robust · 1d798ca3
      Kirill A. Shutemov authored
      Hugh has pointed that compound_head() call can be unsafe in some
      context. There's one example:
      
      	CPU0					CPU1
      
      isolate_migratepages_block()
        page_count()
          compound_head()
            !!PageTail() == true
      					put_page()
      					  tail->first_page = NULL
            head = tail->first_page
      					alloc_pages(__GFP_COMP)
      					   prep_compound_page()
      					     tail->first_page = head
      					     __SetPageTail(p);
            !!PageTail() == true
          <head == NULL dereferencing>
      
      The race is pure theoretical. I don't it's possible to trigger it in
      practice. But who knows.
      
      We can fix the race by changing how encode PageTail() and compound_head()
      within struct page to be able to update them in one shot.
      
      The patch introduces page->compound_head into third double word block in
      front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
      the rest bits are pointer to head page if bit zero is set.
      
      The patch moves page->pmd_huge_pte out of word, just in case if an
      architecture defines pgtable_t into something what can have the bit 0
      set.
      
      hugetlb_cgroup uses page->lru.next in the second tail page to store
      pointer struct hugetlb_cgroup. The patch switch it to use page->private
      in the second tail page instead. The space is free since ->first_page is
      removed from the union.
      
      The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
      limitation, since there's now space in first tail page to store struct
      hugetlb_cgroup pointer. But that's out of scope of the patch.
      
      That means page->compound_head shares storage space with:
      
       - page->lru.next;
       - page->next;
       - page->rcu_head.next;
      
      That's too long list to be absolutely sure, but looks like nobody uses
      bit 0 of the word.
      
      page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
      call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
      call_rcu_lazy() is not allowed as it makes use of the bit and we can
      get false positive PageTail().
      
      [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.comSigned-off-by: default avatarKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Reviewed-by: default avatarAndrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Acked-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      1d798ca3
    • Mel Gorman's avatar
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep... · d0164adc
      Mel Gorman authored
      mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
      
      __GFP_WAIT has been used to identify atomic context in callers that hold
      spinlocks or are in interrupts.  They are expected to be high priority and
      have access one of two watermarks lower than "min" which can be referred
      to as the "atomic reserve".  __GFP_HIGH users get access to the first
      lower watermark and can be called the "high priority reserve".
      
      Over time, callers had a requirement to not block when fallback options
      were available.  Some have abused __GFP_WAIT leading to a situation where
      an optimisitic allocation with a fallback option can access atomic
      reserves.
      
      This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
      cannot sleep and have no alternative.  High priority users continue to use
      __GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
      are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
      callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
      redefined as a caller that is willing to enter direct reclaim and wake
      kswapd for background reclaim.
      
      This patch then converts a number of sites
      
      o __GFP_ATOMIC is used by callers that are high priority and have memory
        pools for those requests. GFP_ATOMIC uses this flag.
      
      o Callers that have a limited mempool to guarantee forward progress clear
        __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
        into this category where kswapd will still be woken but atomic reserves
        are not used as there is a one-entry mempool to guarantee progress.
      
      o Callers that are checking if they are non-blocking should use the
        helper gfpflags_allow_blocking() where possible. This is because
        checking for __GFP_WAIT as was done historically now can trigger false
        positives. Some exceptions like dm-crypt.c exist where the code intent
        is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
        flag manipulations.
      
      o Callers that built their own GFP flags instead of starting with GFP_KERNEL
        and friends now also need to specify __GFP_KSWAPD_RECLAIM.
      
      The first key hazard to watch out for is callers that removed __GFP_WAIT
      and was depending on access to atomic reserves for inconspicuous reasons.
      In some cases it may be appropriate for them to use __GFP_HIGH.
      
      The second key hazard is callers that assembled their own combination of
      GFP flags instead of starting with something like GFP_KERNEL.  They may
      now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
      if it's missed in most cases as other activity will wake kswapd.
      Signed-off-by: default avatarMel Gorman <mgorman@techsingularity.net>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Acked-by: default avatarMichal Hocko <mhocko@suse.com>
      Acked-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      d0164adc
  21. 06 Nov, 2015 5 commits
    • Hugh Dickins's avatar
      mm: page migration avoid touching newpage until no going back · cf4b769a
      Hugh Dickins authored
      We have had trouble in the past from the way in which page migration's
      newpage is initialized in dribs and drabs - see commit 8bdd6380 ("mm:
      fix direct reclaim writeback regression") which proposed a cleanup.
      
      We have no actual problem now, but I think the procedure would be clearer
      (and alternative get_new_page pools safer to implement) if we assert that
      newpage is not touched until we are sure that it's going to be used -
      except for taking the trylock on it in __unmap_and_move().
      
      So shift the early initializations from move_to_new_page() into
      migrate_page_move_mapping(), mapping and NULL-mapping paths.  Similarly
      migrate_huge_page_move_mapping(), but its NULL-mapping path can just be
      deleted: you cannot reach hugetlbfs_migrate_page() with a NULL mapping.
      
      Adjust stages 3 to 8 in the Documentation file accordingly.
      Signed-off-by: default avatarHugh Dickins <hughd@google.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      cf4b769a
    • Hugh Dickins's avatar
      mm: rmap use pte lock not mmap_sem to set PageMlocked · b87537d9
      Hugh Dickins authored
      KernelThreadSanitizer (ktsan) has shown that the down_read_trylock() of
      mmap_sem in try_to_unmap_one() (when going to set PageMlocked on a page
      found mapped in a VM_LOCKED vma) is ineffective against races with
      exit_mmap()'s munlock_vma_pages_all(), because mmap_sem is not held when
      tearing down an mm.
      
      But that's okay, those races are benign; and although we've believed for
      years in that ugly down_read_trylock(), it's unsuitable for the job, and
      frustrates the good intention of setting PageMlocked when it fails.
      
      It just doesn't matter if here we read vm_flags an instant before or after
      a racing mlock() or munlock() or exit_mmap() sets or clears VM_LOCKED: the
      syscalls (or exit) work their way up the address space (taking pt locks
      after updating vm_flags) to establish the final state.
      
      We do still need to be careful never to mark a page Mlocked (hence
      unevictable) by any race that will not be corrected shortly after.  The
      page lock protects from many of the races, but not all (a page is not
      necessarily locked when it's unmapped).  But the pte lock we just dropped
      is good to cover the rest (and serializes even with
      munlock_vma_pages_all(), so no special barriers required): now hold on to
      the pte lock while calling mlock_vma_page().  Is that lock ordering safe?
      Yes, that's how follow_page_pte() calls it, and how page_remove_rmap()
      calls the complementary clear_page_mlock().
      
      This fixes the following case (though not a case which anyone has
      complained of), which mmap_sem did not: truncation's preliminary
      unmap_mapping_range() is supposed to remove even the anonymous COWs of
      filecache pages, and that might race with try_to_unmap_one() on a
      VM_LOCKED vma, so that mlock_vma_page() sets PageMlocked just after
      zap_pte_range() unmaps the page, causing "Bad page state (mlocked)" when
      freed.  The pte lock protects against this.
      
      You could say that it also protects against the more ordinary case, racing
      with the preliminary unmapping of a filecache page itself: but in our
      current tree, that's independently protected by i_mmap_rwsem; and that
      race would be why "Bad page state (mlocked)" was seen before commit
      48ec833b ("Revert mm/memory.c: share the i_mmap_rwsem").
      
      Vlastimil Babka points out another race which this patch protects against.
       try_to_unmap_one() might reach its mlock_vma_page() TestSetPageMlocked a
      moment after munlock_vma_pages_all() did its Phase 1 TestClearPageMlocked:
      leaving PageMlocked and unevictable when it should be evictable.  mmap_sem
      is ineffective because exit_mmap() does not hold it; page lock ineffective
      because __munlock_pagevec() only takes it afterwards, in Phase 2; pte lock
      is effective because __munlock_pagevec_fill() takes it to get the page,
      after VM_LOCKED was cleared from vm_flags, so visible to try_to_unmap_one.
      
      Kirill Shutemov points out that if the compiler chooses to implement a
      "vma->vm_flags &= VM_WHATEVER" or "vma->vm_flags |= VM_WHATEVER" operation
      with an intermediate store of unrelated bits set, since I'm here foregoing
      its usual protection by mmap_sem, try_to_unmap_one() might catch sight of
      a spurious VM_LOCKED in vm_flags, and make the wrong decision.  This does
      not appear to be an immediate problem, but we may want to define vm_flags
      accessors in future, to guard against such a possibility.
      
      While we're here, make a related optimization in try_to_munmap_one(): if
      it's doing TTU_MUNLOCK, then there's no point at all in descending the
      page tables and getting the pt lock, unless the vma is VM_LOCKED.  Yes,
      that can change racily, but it can change racily even without the
      optimization: it's not critical.  Far better not to waste time here.
      
      Stopped short of separating try_to_munlock_one() from try_to_munmap_one()
      on this occasion, but that's probably the sensible next step - with a
      rename, given that try_to_munlock()'s business is to try to set Mlocked.
      
      Updated the unevictable-lru Documentation, to remove its reference to mmap
      semaphore, but found a few more updates needed in just that area.
      Signed-off-by: default avatarHugh Dickins <hughd@google.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      b87537d9
    • Hugh Dickins's avatar
      mm Documentation: undoc non-linear vmas · 7a14239a
      Hugh Dickins authored
      While updating some mm Documentation, I came across a few straggling
      references to the non-linear vmas which were happily removed in v4.0.
      Delete them.
      Signed-off-by: default avatarHugh Dickins <hughd@google.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Rik van Riel <riel@redhat.com>
      Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      7a14239a
    • Ebru Akagunduz's avatar
      Documentation/vm/transhuge.txt: add information about max_ptes_swap · 80f73b4b
      Ebru Akagunduz authored
      max_ptes_swap specifies how many pages can be brought in from swap when
      collapsing a group of pages into a transparent huge page.
      
      /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap
      
      A higher value can cause excessive swap IO and waste memory.  A lower
      value can prevent THPs from being collapsed, resulting fewer pages being
      collapsed into THPs, and lower memory access performance.
      Signed-off-by: default avatarEbru Akagunduz <ebru.akagunduz@gmail.com>
      Acked-by: default avatarRik van Riel <riel@redhat.com>
      Acked-by: default avatarDavid Rientjes <rientjes@google.com>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      80f73b4b
    • Sergey Senozhatsky's avatar
      Doc/slub: document slabinfo-gnuplot.sh script · 76f8ec71
      Sergey Senozhatsky authored
      Add documentation on how to use slabinfo-gnuplot.sh script.
      Signed-off-by: default avatarSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: default avatarChristoph Lameter <cl@linux.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      76f8ec71
  22. 03 Nov, 2015 1 commit
  23. 10 Sep, 2015 4 commits
    • Vladimir Davydov's avatar
      proc: export idle flag via kpageflags · f074a8f4
      Vladimir Davydov authored
      As noted by Minchan, a benefit of reading idle flag from /proc/kpageflags
      is that one can easily filter dirty and/or unevictable pages while
      estimating the size of unused memory.
      
      Note that idle flag read from /proc/kpageflags may be stale in case the
      page was accessed via a PTE, because it would be too costly to iterate
      over all page mappings on each /proc/kpageflags read to provide an
      up-to-date value.  To make sure the flag is up-to-date one has to read
      /sys/kernel/mm/page_idle/bitmap first.
      Signed-off-by: default avatarVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: default avatarAndres Lagar-Cavilla <andreslc@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      f074a8f4
    • Vladimir Davydov's avatar
      mm: introduce idle page tracking · 33c3fc71
      Vladimir Davydov authored
      Knowing the portion of memory that is not used by a certain application or
      memory cgroup (idle memory) can be useful for partitioning the system
      efficiently, e.g.  by setting memory cgroup limits appropriately.
      Currently, the only means to estimate the amount of idle memory provided
      by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
      access bit for all pages mapped to a particular process by writing 1 to
      clear_refs, wait for some time, and then count smaps:Referenced.  However,
      this method has two serious shortcomings:
      
       - it does not count unmapped file pages
       - it affects the reclaimer logic
      
      To overcome these drawbacks, this patch introduces two new page flags,
      Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
      A page's Idle flag can only be set from userspace by setting bit in
      /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
      and it is cleared whenever the page is accessed either through page tables
      (it is cleared in page_referenced() in this case) or using the read(2)
      system call (mark_page_accessed()). Thus by setting the Idle flag for
      pages of a particular workload, which can be found e.g.  by reading
      /proc/PID/pagemap, waiting for some time to let the workload access its
      working set, and then reading the bitmap file, one can estimate the amount
      of pages that are not used by the workload.
      
      The Young page flag is used to avoid interference with the memory
      reclaimer.  A page's Young flag is set whenever the Access bit of a page
      table entry pointing to the page is cleared by writing to the bitmap file.
      If page_referenced() is called on a Young page, it will add 1 to its
      return value, therefore concealing the fact that the Access bit was
      cleared.
      
      Note, since there is no room for extra page flags on 32 bit, this feature
      uses extended page flags when compiled on 32 bit.
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: kpageidle requires an MMU]
      [akpm@linux-foundation.org: decouple from page-flags rework]
      Signed-off-by: default avatarVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: default avatarAndres Lagar-Cavilla <andreslc@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      33c3fc71
    • Vladimir Davydov's avatar
      proc: add kpagecgroup file · 80ae2fdc
      Vladimir Davydov authored
      /proc/kpagecgroup contains a 64-bit inode number of the memory cgroup each
      page is charged to, indexed by PFN.  Having this information is useful for
      estimating a cgroup working set size.
      
      The file is present if CONFIG_PROC_PAGE_MONITOR && CONFIG_MEMCG.
      Signed-off-by: default avatarVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: default avatarAndres Lagar-Cavilla <andreslc@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      80ae2fdc
    • Dan Streetman's avatar
      zswap: update docs for runtime-changeable attributes · 9c4c5ef3
      Dan Streetman authored
      Change the Documentation/vm/zswap.txt doc to indicate that the "zpool" and
      "compressor" params are now changeable at runtime.
      Signed-off-by: default avatarDan Streetman <ddstreet@ieee.org>
      Cc: Seth Jennings <sjennings@variantweb.net>
      Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      9c4c5ef3
  24. 08 Sep, 2015 1 commit