analog.c 16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * This file is part of the libsigrok project.
 *
 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <config.h>
21 22
#include <stdio.h>
#include <stdint.h>
23
#include <string.h>
24
#include <ctype.h>
25
#include <math.h>
26
#include <libsigrok/libsigrok.h>
27 28
#include "libsigrok-internal.h"

Uwe Hermann's avatar
Uwe Hermann committed
29
/** @cond PRIVATE */
30
#define LOG_PREFIX "analog"
Uwe Hermann's avatar
Uwe Hermann committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/** @endcond */

/**
 * @file
 *
 * Handling and converting analog data.
 */

/**
 * @defgroup grp_analog Analog data handling
 *
 * Handling and converting analog data.
 *
 * @{
 */
46

47 48
struct unit_mq_string {
	uint64_t value;
Uwe Hermann's avatar
Uwe Hermann committed
49
	const char *str;
50 51
};

52
/* Please use the same order as in enum sr_unit (libsigrok.h). */
53 54 55 56 57 58 59 60 61 62
static struct unit_mq_string unit_strings[] = {
	{ SR_UNIT_VOLT, "V" },
	{ SR_UNIT_AMPERE, "A" },
	{ SR_UNIT_OHM, "\xe2\x84\xa6" },
	{ SR_UNIT_FARAD, "F" },
	{ SR_UNIT_KELVIN, "K" },
	{ SR_UNIT_CELSIUS, "\xc2\xb0""C" },
	{ SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
	{ SR_UNIT_HERTZ, "Hz" },
	{ SR_UNIT_PERCENTAGE, "%" },
63
	{ SR_UNIT_BOOLEAN, "" },
64 65
	{ SR_UNIT_SECOND, "s" },
	{ SR_UNIT_SIEMENS, "S" },
66 67
	{ SR_UNIT_DECIBEL_MW, "dBm" },
	{ SR_UNIT_DECIBEL_VOLT, "dBV" },
68
	{ SR_UNIT_UNITLESS, "" },
69 70 71 72 73 74 75 76 77 78
	{ SR_UNIT_DECIBEL_SPL, "dB" },
	{ SR_UNIT_CONCENTRATION, "ppm" },
	{ SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
	{ SR_UNIT_VOLT_AMPERE, "VA" },
	{ SR_UNIT_WATT, "W" },
	{ SR_UNIT_WATT_HOUR, "Wh" },
	{ SR_UNIT_METER_SECOND, "m/s" },
	{ SR_UNIT_HECTOPASCAL, "hPa" },
	{ SR_UNIT_HUMIDITY_293K, "%rF" },
	{ SR_UNIT_DEGREE, "\xc2\xb0" },
79 80 81 82 83 84 85 86 87 88 89 90
	{ SR_UNIT_HENRY, "H" },
	{ SR_UNIT_GRAM, "g" },
	{ SR_UNIT_CARAT, "ct" },
	{ SR_UNIT_OUNCE, "oz" },
	{ SR_UNIT_TROY_OUNCE, "oz t" },
	{ SR_UNIT_POUND, "lb" },
	{ SR_UNIT_PENNYWEIGHT, "dwt" },
	{ SR_UNIT_GRAIN, "gr" },
	{ SR_UNIT_TAEL, "tael" },
	{ SR_UNIT_MOMME, "momme" },
	{ SR_UNIT_TOLA, "tola" },
	{ SR_UNIT_PIECE, "pcs" },
91 92 93
	ALL_ZERO
};

94
/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
95 96 97 98 99 100 101 102 103 104
static struct unit_mq_string mq_strings[] = {
	{ SR_MQFLAG_AC, " AC" },
	{ SR_MQFLAG_DC, " DC" },
	{ SR_MQFLAG_RMS, " RMS" },
	{ SR_MQFLAG_DIODE, " DIODE" },
	{ SR_MQFLAG_HOLD, " HOLD" },
	{ SR_MQFLAG_MAX, " MAX" },
	{ SR_MQFLAG_MIN, " MIN" },
	{ SR_MQFLAG_AUTORANGE, " AUTO" },
	{ SR_MQFLAG_RELATIVE, " REL" },
105 106 107 108 109 110 111 112 113 114
	{ SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
	{ SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
	{ SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
	{ SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
	{ SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
	{ SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
	{ SR_MQFLAG_SPL_LAT, " LAT" },
	/* Not a standard function for SLMs, so this is a made-up notation. */
	{ SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
	{ SR_MQFLAG_DURATION, " DURATION" },
115 116
	{ SR_MQFLAG_AVG, " AVG" },
	{ SR_MQFLAG_REFERENCE, " REF" },
117
	{ SR_MQFLAG_UNSTABLE, " UNSTABLE" },
118
	{ SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
119 120 121
	ALL_ZERO
};

Uwe Hermann's avatar
Uwe Hermann committed
122
/** @private */
123
SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
		struct sr_analog_encoding *encoding,
		struct sr_analog_meaning *meaning,
		struct sr_analog_spec *spec,
		int digits)
{
	memset(analog, 0, sizeof(*analog));
	memset(encoding, 0, sizeof(*encoding));
	memset(meaning, 0, sizeof(*meaning));
	memset(spec, 0, sizeof(*spec));

	analog->encoding = encoding;
	analog->meaning = meaning;
	analog->spec = spec;

	encoding->unitsize = sizeof(float);
	encoding->is_float = TRUE;
#ifdef WORDS_BIGENDIAN
	encoding->is_bigendian = TRUE;
#else
	encoding->is_bigendian = FALSE;
#endif
	encoding->digits = digits;
	encoding->is_digits_decimal = TRUE;
	encoding->scale.p = 1;
	encoding->scale.q = 1;
	encoding->offset.p = 0;
	encoding->offset.q = 1;

	spec->spec_digits = digits;

	return SR_OK;
}

157 158 159
/**
 * Convert an analog datafeed payload to an array of floats.
 *
160 161 162
 * Sufficient memory for outbuf must have been pre-allocated by the caller,
 * who is also responsible for freeing it when no longer needed.
 *
163 164 165 166 167 168 169 170 171 172 173
 * @param[in] analog The analog payload to convert. Must not be NULL.
 *                   analog->data, analog->meaning, and analog->encoding
 *                   must not be NULL.
 * @param[out] outbuf Memory where to store the result. Must not be NULL.
 *
 * @retval SR_OK Success.
 * @retval SR_ERR Unsupported encoding.
 * @retval SR_ERR_ARG Invalid argument.
 *
 * @since 0.4.0
 */
174
SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
175
		float *outbuf)
176 177
{
	float offset;
178
	unsigned int b, i, count;
179
	gboolean bigendian;
180 181 182 183 184 185

	if (!analog || !(analog->data) || !(analog->meaning)
			|| !(analog->encoding) || !outbuf)
		return SR_ERR_ARG;

	count = analog->num_samples * g_slist_length(analog->meaning->channels);
186 187 188 189 190 191

#ifdef WORDS_BIGENDIAN
	bigendian = TRUE;
#else
	bigendian = FALSE;
#endif
192

193
	if (!analog->encoding->is_float) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
		float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
		float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
		gboolean is_signed = analog->encoding->is_signed;
		gboolean is_bigendian = analog->encoding->is_bigendian;
		int8_t *data8 = (int8_t *)(analog->data);
		int16_t *data16 = (int16_t *)(analog->data);
		int32_t *data32 = (int32_t *)(analog->data);

		switch (analog->encoding->unitsize) {
		case 1:
			if (is_signed) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * data8[i];
					outbuf[i] += offset;
				}
			} else {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * R8(data8 + i);
					outbuf[i] += offset;
				}
			}
			break;
		case 2:
			if (is_signed && is_bigendian) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RB16S(&data16[i]);
					outbuf[i] += offset;
				}
			} else if (is_bigendian) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RB16(&data16[i]);
					outbuf[i] += offset;
				}
			} else if (is_signed) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RL16S(&data16[i]);
					outbuf[i] += offset;
				}
			} else {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RL16(&data16[i]);
					outbuf[i] += offset;
				}
			}
			break;
		case 4:
			if (is_signed && is_bigendian) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RB32S(&data32[i]);
					outbuf[i] += offset;
				}
			} else if (is_bigendian) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RB32(&data32[i]);
					outbuf[i] += offset;
				}
			} else if (is_signed) {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RL32S(&data32[i]);
					outbuf[i] += offset;
				}
			} else {
				for (unsigned int i = 0; i < count; i++) {
					outbuf[i] = scale * RL32(&data32[i]);
					outbuf[i] += offset;
				}
			}
			break;
		default:
263 264
			sr_err("Unsupported unit size '%d' for analog-to-float"
			       " conversion.", analog->encoding->unitsize);
265 266 267
			return SR_ERR;
		}
		return SR_OK;
268 269 270 271
	}

	if (analog->encoding->unitsize == sizeof(float)
			&& analog->encoding->is_bigendian == bigendian
272 273
			&& analog->encoding->scale.p == 1
			&& analog->encoding->scale.q == 1
274
			&& analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
275
		/* The data is already in the right format. */
276
		memcpy(outbuf, analog->data, count * sizeof(float));
277
	} else {
278
		for (i = 0; i < count; i += analog->encoding->unitsize) {
279 280
			for (b = 0; b < analog->encoding->unitsize; b++) {
				if (analog->encoding->is_bigendian == bigendian)
281 282
					((uint8_t *)outbuf)[i + b] =
						((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
283
				else
284 285
					((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
						((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
286
			}
287 288
			if (analog->encoding->scale.p != 1
					|| analog->encoding->scale.q != 1)
289 290 291
				outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
			offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
			outbuf[i] += offset;
292 293 294 295 296
		}
	}

	return SR_OK;
}
297

298 299 300 301 302 303 304 305 306 307 308 309
/**
 * Scale a float value to the appropriate SI prefix.
 *
 * @param[in,out] value The float value to convert to appropriate SI prefix.
 * @param[in,out] digits The number of significant decimal digits in value.
 *
 * @return The SI prefix to which value was scaled, as a printable string.
 *
 * @since 0.5.0
 */
SR_API const char *sr_analog_si_prefix(float *value, int *digits)
{
Uwe Hermann's avatar
Uwe Hermann committed
310
/** @cond PRIVATE */
311 312
#define NEG_PREFIX_COUNT 5  /* number of prefixes below unity */
#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
Uwe Hermann's avatar
Uwe Hermann committed
313
/** @endcond */
314
	static const char *prefixes[] = { "f", "p", "n", "µ", "m", "", "k", "M", "G", "T" };
315

316
	if (!value || !digits || isnan(*value))
317 318 319 320 321
		return prefixes[NEG_PREFIX_COUNT];

	float logval = log10f(fabsf(*value));
	int prefix = (logval / 3) - (logval < 1);

322 323 324 325 326 327
	if (prefix < -NEG_PREFIX_COUNT)
		prefix = -NEG_PREFIX_COUNT;
	if (3 * prefix < -*digits)
		prefix = (-*digits + 2 * (*digits < 0)) / 3;
	if (prefix > POS_PREFIX_COUNT)
		prefix = POS_PREFIX_COUNT;
328 329 330

	*value *= powf(10, -3 * prefix);
	*digits += 3 * prefix;
331

332 333 334
	return prefixes[prefix + NEG_PREFIX_COUNT];
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * Check if a unit "accepts" an SI prefix.
 *
 * E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
 * SR_UNIT_PERCENTAGE are not.
 *
 * @param[in] unit The unit to check for SI prefix "friendliness".
 *
 * @return TRUE if the unit "accept" an SI prefix.
 *
 * @since 0.5.0
 */
SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
{
	static const enum sr_unit prefix_friendly_units[] = {
		SR_UNIT_VOLT,
		SR_UNIT_AMPERE,
		SR_UNIT_OHM,
		SR_UNIT_FARAD,
		SR_UNIT_KELVIN,
		SR_UNIT_HERTZ,
		SR_UNIT_SECOND,
		SR_UNIT_SIEMENS,
		SR_UNIT_VOLT_AMPERE,
		SR_UNIT_WATT,
		SR_UNIT_WATT_HOUR,
		SR_UNIT_METER_SECOND,
		SR_UNIT_HENRY,
		SR_UNIT_GRAM
	};
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
		if (unit == prefix_friendly_units[i])
			break;

	if (unit != prefix_friendly_units[i])
		return FALSE;

	return TRUE;
}

377
/**
378 379
 * Convert the unit/MQ/MQ flags in the analog struct to a string.
 *
380 381 382
 * The string is allocated by the function and must be freed by the caller
 * after use by calling g_free().
 *
383 384 385
 * @param[in] analog Struct containing the unit, MQ and MQ flags.
 *                   Must not be NULL. analog->meaning must not be NULL.
 * @param[out] result Pointer to store result. Must not be NULL.
386
 *
387 388
 * @retval SR_OK Success.
 * @retval SR_ERR_ARG Invalid argument.
389 390 391
 *
 * @since 0.4.0
 */
392
SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
393
		char **result)
394
{
395
	int i;
396 397 398 399 400 401
	GString *buf;

	if (!analog || !(analog->meaning) || !result)
		return SR_ERR_ARG;

	buf = g_string_new(NULL);
402 403 404

	for (i = 0; unit_strings[i].value; i++) {
		if (analog->meaning->unit == unit_strings[i].value) {
405
			g_string_assign(buf, unit_strings[i].str);
406 407 408 409 410
			break;
		}
	}

	/* More than one MQ flag may apply. */
411 412 413 414 415 416
	for (i = 0; mq_strings[i].value; i++)
		if (analog->meaning->mqflags & mq_strings[i].value)
			g_string_append(buf, mq_strings[i].str);

	*result = buf->str;
	g_string_free(buf, FALSE);
417 418 419 420

	return SR_OK;
}

421
/**
422 423
 * Set sr_rational r to the given value.
 *
424 425 426 427 428
 * @param[out] r Rational number struct to set. Must not be NULL.
 * @param[in] p Numerator.
 * @param[in] q Denominator.
 *
 * @since 0.4.0
429
 */
430
SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
431
{
432 433 434
	if (!r)
		return;

435 436 437 438
	r->p = p;
	r->q = q;
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
#ifndef HAVE___INT128_T
struct sr_int128_t {
	int64_t high;
	uint64_t low;
};

struct sr_uint128_t {
	uint64_t high;
	uint64_t low;
};

static void mult_int64(struct sr_int128_t *res, const int64_t a,
	const int64_t b)
{
	uint64_t t1, t2, t3, t4;

	t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
	t2 = (UINT32_MAX & a) * (b >> 32);
	t3 = (a >> 32) * (UINT32_MAX & b);
	t4 = (a >> 32) * (b >> 32);

	res->low = t1 + (t2 << 32) + (t3 << 32);
	res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
	res->high >>= 32;
	res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}

static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
	const uint64_t b)
{
	uint64_t t1, t2, t3, t4;

	// (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
	t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
	t2 = (UINT32_MAX & a) * (b >> 32);
	t3 = (a >> 32) * (UINT32_MAX & b);
	t4 = (a >> 32) * (b >> 32);

	res->low = t1 + (t2 << 32) + (t3 << 32);
	res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
	res->high >>= 32;
	res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}
#endif

/**
485
 * Compare two sr_rational for equality.
486
 *
487
 * The values are compared for numerical equality, i.e. 2/10 == 1/5.
488
 *
489 490
 * @param[in] a First value.
 * @param[in] b Second value.
491
 *
492 493
 * @retval 1 if both values are equal.
 * @retval 0 Otherwise.
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
 *
 * @since 0.5.0
 */
SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
	__int128_t m1, m2;

	/* p1/q1 = p2/q2  <=>  p1*q2 = p2*q1 */
	m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
	m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);

	return (m1 == m2);

#else
	struct sr_int128_t m1, m2;

	mult_int64(&m1, a->q, b->p);
	mult_int64(&m2, a->p, b->q);

	return (m1.high == m2.high) && (m1.low == m2.low);
#endif
}

518
/**
519
 * Multiply two sr_rational.
520 521 522 523 524
 *
 * The resulting nominator/denominator are reduced if the result would not fit
 * otherwise. If the resulting nominator/denominator are relatively prime,
 * this may not be possible.
 *
525 526 527 528 529
 * It is safe to use the same variable for result and input values.
 *
 * @param[in] a First value.
 * @param[in] b Second value.
 * @param[out] res Result.
530
 *
531
 * @retval SR_OK Success.
532
 * @retval SR_ERR_ARG Resulting value too large.
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
 *
 * @since 0.5.0
 */
SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
	const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
	__int128_t p;
	__uint128_t q;

	p = (__int128_t)(a->p) * (__int128_t)(b->p);
	q = (__uint128_t)(a->q) * (__uint128_t)(b->q);

	if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
		while (!((p & 1) || (q & 1))) {
			p /= 2;
			q /= 2;
		}
	}

	if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
		// TODO: determine gcd to do further reduction
		return SR_ERR_ARG;
	}

	res->p = (int64_t)(p);
	res->q = (uint64_t)(q);

	return SR_OK;

#else
	struct sr_int128_t p;
	struct sr_uint128_t q;

	mult_int64(&p, a->p, b->p);
	mult_uint64(&q, a->q, b->q);

	while (!(p.low & 1) && !(q.low & 1)) {
		p.low /= 2;
572 573
		if (p.high & 1)
			p.low |= (1ll << 63);
574 575
		p.high >>= 1;
		q.low /= 2;
576 577
		if (q.high & 1)
			q.low |= (1ll << 63);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		q.high >>= 1;
	}

	if (q.high)
		return SR_ERR_ARG;
	if ((p.high >= 0) && (p.low > INT64_MAX))
		return SR_ERR_ARG;
	if (p.high < -1)
		return SR_ERR_ARG;

	res->p = (int64_t)p.low;
	res->q = q.low;

	return SR_OK;
#endif
}

595
/**
596
 * Divide rational a by rational b.
597 598 599 600 601
 *
 * The resulting nominator/denominator are reduced if the result would not fit
 * otherwise. If the resulting nominator/denominator are relatively prime,
 * this may not be possible.
 *
602 603 604 605 606
 * It is safe to use the same variable for result and input values.
 *
 * @param[in] num Numerator.
 * @param[in] div Divisor.
 * @param[out] res Result.
607 608
 *
 * @retval SR_OK Success.
609 610 611
 * @retval SR_ERR_ARG Division by zero.
 * @retval SR_ERR_ARG Denominator of divisor too large.
 * @retval SR_ERR_ARG Resulting value too large.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
 *
 * @since 0.5.0
 */
SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
	const struct sr_rational *div)
{
	struct sr_rational t;

	if (div->q > INT64_MAX)
		return SR_ERR_ARG;
	if (div->p == 0)
		return SR_ERR_ARG;

	if (div->p > 0) {
		t.p = div->q;
		t.q = div->p;
	} else {
		t.p = -div->q;
		t.q = -div->p;
	}

	return sr_rational_mult(res, num, &t);
}

Uwe Hermann's avatar
Uwe Hermann committed
636
/** @} */