sbitmap.c 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2016 Facebook
 * Copyright (C) 2013-2014 Jens Axboe
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

18
#include <linux/sched.h>
19
#include <linux/random.h>
20
#include <linux/sbitmap.h>
21
#include <linux/seq_file.h>
22

23 24 25 26 27 28 29
/*
 * See if we have deferred clears that we can batch move
 */
static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
{
	unsigned long mask, val;
	bool ret = false;
30
	unsigned long flags;
31

32
	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

	if (!sb->map[index].cleared)
		goto out_unlock;

	/*
	 * First get a stable cleared mask, setting the old mask to 0.
	 */
	do {
		mask = sb->map[index].cleared;
	} while (cmpxchg(&sb->map[index].cleared, mask, 0) != mask);

	/*
	 * Now clear the masked bits in our free word
	 */
	do {
		val = sb->map[index].word;
	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);

	ret = true;
out_unlock:
53
	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
54 55 56
	return ret;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
		      gfp_t flags, int node)
{
	unsigned int bits_per_word;
	unsigned int i;

	if (shift < 0) {
		shift = ilog2(BITS_PER_LONG);
		/*
		 * If the bitmap is small, shrink the number of bits per word so
		 * we spread over a few cachelines, at least. If less than 4
		 * bits, just forget about it, it's not going to work optimally
		 * anyway.
		 */
		if (depth >= 4) {
			while ((4U << shift) > depth)
				shift--;
		}
	}
	bits_per_word = 1U << shift;
	if (bits_per_word > BITS_PER_LONG)
		return -EINVAL;

	sb->shift = shift;
	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);

	if (depth == 0) {
		sb->map = NULL;
		return 0;
	}

89
	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
90 91 92 93 94 95
	if (!sb->map)
		return -ENOMEM;

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
96
		spin_lock_init(&sb->map[i].swap_lock);
97 98 99 100 101 102 103 104 105 106
	}
	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);

void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
	unsigned int bits_per_word = 1U << sb->shift;
	unsigned int i;

107 108 109
	for (i = 0; i < sb->map_nr; i++)
		sbitmap_deferred_clear(sb, i);

110 111 112 113 114 115 116 117 118 119
	sb->depth = depth;
	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);

	for (i = 0; i < sb->map_nr; i++) {
		sb->map[i].depth = min(depth, bits_per_word);
		depth -= sb->map[i].depth;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);

120 121
static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
			      unsigned int hint, bool wrap)
122 123 124 125 126
{
	unsigned int orig_hint = hint;
	int nr;

	while (1) {
127 128
		nr = find_next_zero_bit(word, depth, hint);
		if (unlikely(nr >= depth)) {
129 130 131 132 133 134 135 136 137 138 139 140
			/*
			 * We started with an offset, and we didn't reset the
			 * offset to 0 in a failure case, so start from 0 to
			 * exhaust the map.
			 */
			if (orig_hint && hint && wrap) {
				hint = orig_hint = 0;
				continue;
			}
			return -1;
		}

141
		if (!test_and_set_bit_lock(nr, word))
142 143 144
			break;

		hint = nr + 1;
145
		if (hint >= depth - 1)
146 147 148 149 150 151
			hint = 0;
	}

	return nr;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
				     unsigned int alloc_hint, bool round_robin)
{
	int nr;

	do {
		nr = __sbitmap_get_word(&sb->map[index].word,
					sb->map[index].depth, alloc_hint,
					!round_robin);
		if (nr != -1)
			break;
		if (!sbitmap_deferred_clear(sb, index))
			break;
	} while (1);

	return nr;
}

170 171 172 173 174 175 176
int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
{
	unsigned int i, index;
	int nr = -1;

	index = SB_NR_TO_INDEX(sb, alloc_hint);

177 178 179 180 181 182 183 184 185 186
	/*
	 * Unless we're doing round robin tag allocation, just use the
	 * alloc_hint to find the right word index. No point in looping
	 * twice in find_next_zero_bit() for that case.
	 */
	if (round_robin)
		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
	else
		alloc_hint = 0;

187
	for (i = 0; i < sb->map_nr; i++) {
188 189
		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
						round_robin);
190 191 192 193 194 195
		if (nr != -1) {
			nr += index << sb->shift;
			break;
		}

		/* Jump to next index. */
196 197
		alloc_hint = 0;
		if (++index >= sb->map_nr)
198 199 200 201 202 203 204
			index = 0;
	}

	return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);

205 206 207 208 209 210 211 212 213
int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
			unsigned long shallow_depth)
{
	unsigned int i, index;
	int nr = -1;

	index = SB_NR_TO_INDEX(sb, alloc_hint);

	for (i = 0; i < sb->map_nr; i++) {
214
again:
215 216 217 218 219 220 221 222
		nr = __sbitmap_get_word(&sb->map[index].word,
					min(sb->map[index].depth, shallow_depth),
					SB_NR_TO_BIT(sb, alloc_hint), true);
		if (nr != -1) {
			nr += index << sb->shift;
			break;
		}

223 224 225
		if (sbitmap_deferred_clear(sb, index))
			goto again;

226 227 228 229 230 231 232 233 234 235 236 237 238 239
		/* Jump to next index. */
		index++;
		alloc_hint = index << sb->shift;

		if (index >= sb->map_nr) {
			index = 0;
			alloc_hint = 0;
		}
	}

	return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get_shallow);

240 241 242 243 244
bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++) {
245
		if (sb->map[i].word & ~sb->map[i].cleared)
246 247 248 249 250 251 252 253 254 255 256 257
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);

bool sbitmap_any_bit_clear(const struct sbitmap *sb)
{
	unsigned int i;

	for (i = 0; i < sb->map_nr; i++) {
		const struct sbitmap_word *word = &sb->map[i];
258
		unsigned long mask = word->word & ~word->cleared;
259 260
		unsigned long ret;

261
		ret = find_first_zero_bit(&mask, word->depth);
262 263 264 265 266 267 268
		if (ret < word->depth)
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);

269
static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
270
{
271
	unsigned int i, weight = 0;
272 273 274 275

	for (i = 0; i < sb->map_nr; i++) {
		const struct sbitmap_word *word = &sb->map[i];

276 277 278 279
		if (set)
			weight += bitmap_weight(&word->word, word->depth);
		else
			weight += bitmap_weight(&word->cleared, word->depth);
280 281 282
	}
	return weight;
}
283 284 285 286 287 288 289 290 291 292

static unsigned int sbitmap_weight(const struct sbitmap *sb)
{
	return __sbitmap_weight(sb, true);
}

static unsigned int sbitmap_cleared(const struct sbitmap *sb)
{
	return __sbitmap_weight(sb, false);
}
293

294 295 296
void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
{
	seq_printf(m, "depth=%u\n", sb->depth);
297 298
	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
	seq_printf(m, "map_nr=%u\n", sb->map_nr);
}
EXPORT_SYMBOL_GPL(sbitmap_show);

static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
{
	if ((offset & 0xf) == 0) {
		if (offset != 0)
			seq_putc(m, '\n');
		seq_printf(m, "%08x:", offset);
	}
	if ((offset & 0x1) == 0)
		seq_putc(m, ' ');
	seq_printf(m, "%02x", byte);
}

void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
{
	u8 byte = 0;
	unsigned int byte_bits = 0;
	unsigned int offset = 0;
	int i;

	for (i = 0; i < sb->map_nr; i++) {
		unsigned long word = READ_ONCE(sb->map[i].word);
		unsigned int word_bits = READ_ONCE(sb->map[i].depth);

		while (word_bits > 0) {
			unsigned int bits = min(8 - byte_bits, word_bits);

			byte |= (word & (BIT(bits) - 1)) << byte_bits;
			byte_bits += bits;
			if (byte_bits == 8) {
				emit_byte(m, offset, byte);
				byte = 0;
				byte_bits = 0;
				offset++;
			}
			word >>= bits;
			word_bits -= bits;
		}
	}
	if (byte_bits) {
		emit_byte(m, offset, byte);
		offset++;
	}
	if (offset)
		seq_putc(m, '\n');
}
EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);

351 352
static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
					unsigned int depth)
353 354
{
	unsigned int wake_batch;
355
	unsigned int shallow_depth;
356 357 358

	/*
	 * For each batch, we wake up one queue. We need to make sure that our
359 360 361 362 363 364 365 366 367 368 369 370 371
	 * batch size is small enough that the full depth of the bitmap,
	 * potentially limited by a shallow depth, is enough to wake up all of
	 * the queues.
	 *
	 * Each full word of the bitmap has bits_per_word bits, and there might
	 * be a partial word. There are depth / bits_per_word full words and
	 * depth % bits_per_word bits left over. In bitwise arithmetic:
	 *
	 * bits_per_word = 1 << shift
	 * depth / bits_per_word = depth >> shift
	 * depth % bits_per_word = depth & ((1 << shift) - 1)
	 *
	 * Each word can be limited to sbq->min_shallow_depth bits.
372
	 */
373 374 375 376 377
	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
	depth = ((depth >> sbq->sb.shift) * shallow_depth +
		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
			     SBQ_WAKE_BATCH);
378 379 380 381 382

	return wake_batch;
}

int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
383
			    int shift, bool round_robin, gfp_t flags, int node)
384 385 386 387 388 389 390 391
{
	int ret;
	int i;

	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
	if (ret)
		return ret;

392 393 394 395 396 397
	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
	if (!sbq->alloc_hint) {
		sbitmap_free(&sbq->sb);
		return -ENOMEM;
	}

398 399 400 401 402
	if (depth && !round_robin) {
		for_each_possible_cpu(i)
			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
	}

403 404
	sbq->min_shallow_depth = UINT_MAX;
	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
405
	atomic_set(&sbq->wake_index, 0);
406
	atomic_set(&sbq->ws_active, 0);
407

408
	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
409
	if (!sbq->ws) {
410
		free_percpu(sbq->alloc_hint);
411 412 413 414 415 416 417 418
		sbitmap_free(&sbq->sb);
		return -ENOMEM;
	}

	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		init_waitqueue_head(&sbq->ws[i].wait);
		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
	}
419 420

	sbq->round_robin = round_robin;
421 422 423 424
	return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);

425 426
static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
					    unsigned int depth)
427
{
428
	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
429 430 431 432 433
	int i;

	if (sbq->wake_batch != wake_batch) {
		WRITE_ONCE(sbq->wake_batch, wake_batch);
		/*
434 435 436
		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
		 * to ensure that the batch size is updated before the wait
		 * counts.
437 438 439 440 441
		 */
		smp_mb__before_atomic();
		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
			atomic_set(&sbq->ws[i].wait_cnt, 1);
	}
442 443 444 445 446
}

void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
	sbitmap_queue_update_wake_batch(sbq, depth);
447 448 449 450
	sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);

451
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
452
{
453
	unsigned int hint, depth;
454 455 456
	int nr;

	hint = this_cpu_read(*sbq->alloc_hint);
457 458 459 460 461
	depth = READ_ONCE(sbq->sb.depth);
	if (unlikely(hint >= depth)) {
		hint = depth ? prandom_u32() % depth : 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}
462
	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
463 464 465 466

	if (nr == -1) {
		/* If the map is full, a hint won't do us much good. */
		this_cpu_write(*sbq->alloc_hint, 0);
467
	} else if (nr == hint || unlikely(sbq->round_robin)) {
468 469
		/* Only update the hint if we used it. */
		hint = nr + 1;
470
		if (hint >= depth - 1)
471 472 473 474 475 476 477 478
			hint = 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}

	return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);

479 480 481 482 483 484
int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
				unsigned int shallow_depth)
{
	unsigned int hint, depth;
	int nr;

485 486
	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	hint = this_cpu_read(*sbq->alloc_hint);
	depth = READ_ONCE(sbq->sb.depth);
	if (unlikely(hint >= depth)) {
		hint = depth ? prandom_u32() % depth : 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}
	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);

	if (nr == -1) {
		/* If the map is full, a hint won't do us much good. */
		this_cpu_write(*sbq->alloc_hint, 0);
	} else if (nr == hint || unlikely(sbq->round_robin)) {
		/* Only update the hint if we used it. */
		hint = nr + 1;
		if (hint >= depth - 1)
			hint = 0;
		this_cpu_write(*sbq->alloc_hint, hint);
	}

	return nr;
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);

510 511 512 513 514 515 516 517
void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
				     unsigned int min_shallow_depth)
{
	sbq->min_shallow_depth = min_shallow_depth;
	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);

518 519 520 521
static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
	int i, wake_index;

522 523 524
	if (!atomic_read(&sbq->ws_active))
		return NULL;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait)) {
			int o = atomic_read(&sbq->wake_index);

			if (wake_index != o)
				atomic_cmpxchg(&sbq->wake_index, o, wake_index);
			return ws;
		}

		wake_index = sbq_index_inc(wake_index);
	}

	return NULL;
}

543
static bool __sbq_wake_up(struct sbitmap_queue *sbq)
544 545
{
	struct sbq_wait_state *ws;
546
	unsigned int wake_batch;
547 548 549 550
	int wait_cnt;

	ws = sbq_wake_ptr(sbq);
	if (!ws)
551
		return false;
552 553

	wait_cnt = atomic_dec_return(&ws->wait_cnt);
554
	if (wait_cnt <= 0) {
555 556
		int ret;

557
		wake_batch = READ_ONCE(sbq->wake_batch);
558

559 560 561 562 563 564
		/*
		 * Pairs with the memory barrier in sbitmap_queue_resize() to
		 * ensure that we see the batch size update before the wait
		 * count is reset.
		 */
		smp_mb__before_atomic();
565

566
		/*
567 568 569
		 * For concurrent callers of this, the one that failed the
		 * atomic_cmpxhcg() race should call this function again
		 * to wakeup a new batch on a different 'ws'.
570
		 */
571 572 573 574 575 576 577 578
		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
		if (ret == wait_cnt) {
			sbq_index_atomic_inc(&sbq->wake_index);
			wake_up_nr(&ws->wait, wake_batch);
			return false;
		}

		return true;
579
	}
580 581 582 583

	return false;
}

584
void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
585 586 587
{
	while (__sbq_wake_up(sbq))
		;
588
}
589
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
590

591
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
592
			 unsigned int cpu)
593
{
594 595
	sbitmap_deferred_clear_bit(&sbq->sb, nr);

596 597 598 599 600 601 602 603 604
	/*
	 * Pairs with the memory barrier in set_current_state() to ensure the
	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
	 * waiter. See the comment on waitqueue_active().
	 */
	smp_mb__after_atomic();
	sbitmap_queue_wake_up(sbq);

605
	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
606
		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
607 608 609 610 611 612 613 614
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);

void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
	int i, wake_index;

	/*
615
	 * Pairs with the memory barrier in set_current_state() like in
616
	 * sbitmap_queue_wake_up().
617 618 619 620 621 622 623 624 625 626 627 628 629
	 */
	smp_mb();
	wake_index = atomic_read(&sbq->wake_index);
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[wake_index];

		if (waitqueue_active(&ws->wait))
			wake_up(&ws->wait);

		wake_index = sbq_index_inc(wake_index);
	}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
{
	bool first;
	int i;

	sbitmap_show(&sbq->sb, m);

	seq_puts(m, "alloc_hint={");
	first = true;
	for_each_possible_cpu(i) {
		if (!first)
			seq_puts(m, ", ");
		first = false;
		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
	}
	seq_puts(m, "}\n");

	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
650
	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
651 652 653 654 655 656 657 658 659 660 661 662

	seq_puts(m, "ws={\n");
	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
		struct sbq_wait_state *ws = &sbq->ws[i];

		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
			   atomic_read(&ws->wait_cnt),
			   waitqueue_active(&ws->wait) ? "active" : "inactive");
	}
	seq_puts(m, "}\n");

	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
663
	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
664 665
}
EXPORT_SYMBOL_GPL(sbitmap_queue_show);
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
			    struct sbq_wait_state *ws,
			    struct sbq_wait *sbq_wait)
{
	if (!sbq_wait->sbq) {
		sbq_wait->sbq = sbq;
		atomic_inc(&sbq->ws_active);
	}
	add_wait_queue(&ws->wait, &sbq_wait->wait);
}
EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);

void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
{
	list_del_init(&sbq_wait->wait.entry);
	if (sbq_wait->sbq) {
		atomic_dec(&sbq_wait->sbq->ws_active);
		sbq_wait->sbq = NULL;
	}
}
EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);

689 690 691 692
void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
			     struct sbq_wait_state *ws,
			     struct sbq_wait *sbq_wait, int state)
{
693
	if (!sbq_wait->sbq) {
694
		atomic_inc(&sbq->ws_active);
695
		sbq_wait->sbq = sbq;
696 697 698 699 700 701 702 703 704
	}
	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
}
EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);

void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
			 struct sbq_wait *sbq_wait)
{
	finish_wait(&ws->wait, &sbq_wait->wait);
705
	if (sbq_wait->sbq) {
706
		atomic_dec(&sbq->ws_active);
707
		sbq_wait->sbq = NULL;
708 709 710
	}
}
EXPORT_SYMBOL_GPL(sbitmap_finish_wait);