bitmap.c 36.4 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7
/*
 * lib/bitmap.c
 * Helper functions for bitmap.h.
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */
8 9
#include <linux/export.h>
#include <linux/thread_info.h>
Linus Torvalds's avatar
Linus Torvalds committed
10 11 12 13
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
14
#include <linux/bug.h>
15 16
#include <linux/kernel.h>
#include <linux/string.h>
17
#include <linux/uaccess.h>
18 19

#include <asm/page.h>
Linus Torvalds's avatar
Linus Torvalds committed
20

21 22 23
/**
 * DOC: bitmap introduction
 *
Linus Torvalds's avatar
Linus Torvalds committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 * bitmaps provide an array of bits, implemented using an an
 * array of unsigned longs.  The number of valid bits in a
 * given bitmap does _not_ need to be an exact multiple of
 * BITS_PER_LONG.
 *
 * The possible unused bits in the last, partially used word
 * of a bitmap are 'don't care'.  The implementation makes
 * no particular effort to keep them zero.  It ensures that
 * their value will not affect the results of any operation.
 * The bitmap operations that return Boolean (bitmap_empty,
 * for example) or scalar (bitmap_weight, for example) results
 * carefully filter out these unused bits from impacting their
 * results.
 *
 * These operations actually hold to a slightly stronger rule:
 * if you don't input any bitmaps to these ops that have some
 * unused bits set, then they won't output any set unused bits
 * in output bitmaps.
 *
 * The byte ordering of bitmaps is more natural on little
 * endian architectures.  See the big-endian headers
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 * for the best explanations of this ordering.
 */

int __bitmap_equal(const unsigned long *bitmap1,
50
		const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
51
{
52
	unsigned int k, lim = bits/BITS_PER_LONG;
Linus Torvalds's avatar
Linus Torvalds committed
53 54 55 56 57 58 59 60 61 62 63 64
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] != bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;

	return 1;
}
EXPORT_SYMBOL(__bitmap_equal);

65
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
66
{
67
	unsigned int k, lim = bits/BITS_PER_LONG;
Linus Torvalds's avatar
Linus Torvalds committed
68 69 70 71
	for (k = 0; k < lim; ++k)
		dst[k] = ~src[k];

	if (bits % BITS_PER_LONG)
72
		dst[k] = ~src[k];
Linus Torvalds's avatar
Linus Torvalds committed
73 74 75
}
EXPORT_SYMBOL(__bitmap_complement);

76
/**
Linus Torvalds's avatar
Linus Torvalds committed
77
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
78 79 80
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
81
 *   @nbits : bitmap size, in bits
Linus Torvalds's avatar
Linus Torvalds committed
82 83 84 85 86
 *
 * Shifting right (dividing) means moving bits in the MS -> LS bit
 * direction.  Zeros are fed into the vacated MS positions and the
 * LS bits shifted off the bottom are lost.
 */
87 88
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
			unsigned shift, unsigned nbits)
Linus Torvalds's avatar
Linus Torvalds committed
89
{
90
	unsigned k, lim = BITS_TO_LONGS(nbits);
91
	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
92
	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
Linus Torvalds's avatar
Linus Torvalds committed
93 94 95 96 97 98 99 100 101 102 103
	for (k = 0; off + k < lim; ++k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take lower rem bits of
		 * word above and make them the top rem bits of result.
		 */
		if (!rem || off + k + 1 >= lim)
			upper = 0;
		else {
			upper = src[off + k + 1];
104
			if (off + k + 1 == lim - 1)
Linus Torvalds's avatar
Linus Torvalds committed
105
				upper &= mask;
106
			upper <<= (BITS_PER_LONG - rem);
Linus Torvalds's avatar
Linus Torvalds committed
107 108
		}
		lower = src[off + k];
109
		if (off + k == lim - 1)
Linus Torvalds's avatar
Linus Torvalds committed
110
			lower &= mask;
111 112
		lower >>= rem;
		dst[k] = lower | upper;
Linus Torvalds's avatar
Linus Torvalds committed
113 114 115 116 117 118 119
	}
	if (off)
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);


120
/**
Linus Torvalds's avatar
Linus Torvalds committed
121
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
122 123 124
 *   @dst : destination bitmap
 *   @src : source bitmap
 *   @shift : shift by this many bits
125
 *   @nbits : bitmap size, in bits
Linus Torvalds's avatar
Linus Torvalds committed
126 127 128 129 130 131
 *
 * Shifting left (multiplying) means moving bits in the LS -> MS
 * direction.  Zeros are fed into the vacated LS bit positions
 * and those MS bits shifted off the top are lost.
 */

132 133
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
			unsigned int shift, unsigned int nbits)
Linus Torvalds's avatar
Linus Torvalds committed
134
{
135
	int k;
136
	unsigned int lim = BITS_TO_LONGS(nbits);
137
	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
Linus Torvalds's avatar
Linus Torvalds committed
138 139 140 141 142 143 144 145
	for (k = lim - off - 1; k >= 0; --k) {
		unsigned long upper, lower;

		/*
		 * If shift is not word aligned, take upper rem bits of
		 * word below and make them the bottom rem bits of result.
		 */
		if (rem && k > 0)
146
			lower = src[k - 1] >> (BITS_PER_LONG - rem);
Linus Torvalds's avatar
Linus Torvalds committed
147 148
		else
			lower = 0;
149
		upper = src[k] << rem;
150
		dst[k + off] = lower | upper;
Linus Torvalds's avatar
Linus Torvalds committed
151 152 153 154 155 156
	}
	if (off)
		memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);

157
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
158
				const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
159
{
160
	unsigned int k;
161
	unsigned int lim = bits/BITS_PER_LONG;
162
	unsigned long result = 0;
Linus Torvalds's avatar
Linus Torvalds committed
163

164
	for (k = 0; k < lim; k++)
165
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
166 167 168
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
169
	return result != 0;
Linus Torvalds's avatar
Linus Torvalds committed
170 171 172 173
}
EXPORT_SYMBOL(__bitmap_and);

void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
174
				const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
175
{
176 177
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);
Linus Torvalds's avatar
Linus Torvalds committed
178 179 180 181 182 183 184

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);

void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
185
				const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
186
{
187 188
	unsigned int k;
	unsigned int nr = BITS_TO_LONGS(bits);
Linus Torvalds's avatar
Linus Torvalds committed
189 190 191 192 193 194

	for (k = 0; k < nr; k++)
		dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);

195
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
196
				const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
197
{
198
	unsigned int k;
199
	unsigned int lim = bits/BITS_PER_LONG;
200
	unsigned long result = 0;
Linus Torvalds's avatar
Linus Torvalds committed
201

202
	for (k = 0; k < lim; k++)
203
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
204 205 206
	if (bits % BITS_PER_LONG)
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
			   BITMAP_LAST_WORD_MASK(bits));
207
	return result != 0;
Linus Torvalds's avatar
Linus Torvalds committed
208 209 210 211
}
EXPORT_SYMBOL(__bitmap_andnot);

int __bitmap_intersects(const unsigned long *bitmap1,
212
			const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
213
{
214
	unsigned int k, lim = bits/BITS_PER_LONG;
Linus Torvalds's avatar
Linus Torvalds committed
215 216 217 218 219 220 221 222 223 224 225 226
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & bitmap2[k])
			return 1;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 1;
	return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);

int __bitmap_subset(const unsigned long *bitmap1,
227
		    const unsigned long *bitmap2, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
228
{
229
	unsigned int k, lim = bits/BITS_PER_LONG;
Linus Torvalds's avatar
Linus Torvalds committed
230 231 232 233 234 235 236 237 238 239 240
	for (k = 0; k < lim; ++k)
		if (bitmap1[k] & ~bitmap2[k])
			return 0;

	if (bits % BITS_PER_LONG)
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
			return 0;
	return 1;
}
EXPORT_SYMBOL(__bitmap_subset);

241
int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
Linus Torvalds's avatar
Linus Torvalds committed
242
{
243 244
	unsigned int k, lim = bits/BITS_PER_LONG;
	int w = 0;
Linus Torvalds's avatar
Linus Torvalds committed
245 246

	for (k = 0; k < lim; k++)
247
		w += hweight_long(bitmap[k]);
Linus Torvalds's avatar
Linus Torvalds committed
248 249

	if (bits % BITS_PER_LONG)
250
		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
Linus Torvalds's avatar
Linus Torvalds committed
251 252 253 254 255

	return w;
}
EXPORT_SYMBOL(__bitmap_weight);

256
void __bitmap_set(unsigned long *map, unsigned int start, int len)
257 258
{
	unsigned long *p = map + BIT_WORD(start);
259
	const unsigned int size = start + len;
260 261 262
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);

263
	while (len - bits_to_set >= 0) {
264
		*p |= mask_to_set;
265
		len -= bits_to_set;
266 267 268 269
		bits_to_set = BITS_PER_LONG;
		mask_to_set = ~0UL;
		p++;
	}
270
	if (len) {
271 272 273 274
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
		*p |= mask_to_set;
	}
}
275
EXPORT_SYMBOL(__bitmap_set);
276

277
void __bitmap_clear(unsigned long *map, unsigned int start, int len)
278 279
{
	unsigned long *p = map + BIT_WORD(start);
280
	const unsigned int size = start + len;
281 282 283
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);

284
	while (len - bits_to_clear >= 0) {
285
		*p &= ~mask_to_clear;
286
		len -= bits_to_clear;
287 288 289 290
		bits_to_clear = BITS_PER_LONG;
		mask_to_clear = ~0UL;
		p++;
	}
291
	if (len) {
292 293 294 295
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
		*p &= ~mask_to_clear;
	}
}
296
EXPORT_SYMBOL(__bitmap_clear);
297

298 299
/**
 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
300 301 302 303 304
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 * @align_mask: Alignment mask for zero area
305
 * @align_offset: Alignment offset for zero area.
306 307
 *
 * The @align_mask should be one less than a power of 2; the effect is that
308 309
 * the bit offset of all zero areas this function finds plus @align_offset
 * is multiple of that power of 2.
310
 */
311 312 313 314 315 316
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
					     unsigned long size,
					     unsigned long start,
					     unsigned int nr,
					     unsigned long align_mask,
					     unsigned long align_offset)
317 318 319 320 321 322
{
	unsigned long index, end, i;
again:
	index = find_next_zero_bit(map, size, start);

	/* Align allocation */
323
	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
324 325 326 327 328 329 330 331 332 333 334

	end = index + nr;
	if (end > size)
		return end;
	i = find_next_bit(map, end, index);
	if (i < end) {
		start = i + 1;
		goto again;
	}
	return index;
}
335
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
336

Linus Torvalds's avatar
Linus Torvalds committed
337
/*
338
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
Linus Torvalds's avatar
Linus Torvalds committed
339 340 341 342 343 344 345 346
 * second version by Paul Jackson, third by Joe Korty.
 */

#define CHUNKSZ				32
#define nbits_to_hold_value(val)	fls(val)
#define BASEDEC 10		/* fancier cpuset lists input in decimal */

/**
347 348 349
 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 * @buf: pointer to buffer containing string.
 * @buflen: buffer size in bytes.  If string is smaller than this
Linus Torvalds's avatar
Linus Torvalds committed
350
 *    then it must be terminated with a \0.
351
 * @is_user: location of buffer, 0 indicates kernel space
Linus Torvalds's avatar
Linus Torvalds committed
352 353 354 355 356
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 * bits of the resultant bitmask.  No chunk may specify a value larger
357 358
 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
Linus Torvalds's avatar
Linus Torvalds committed
359 360 361
 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 * Leading and trailing whitespace accepted, but not embedded whitespace.
 */
362 363 364
int __bitmap_parse(const char *buf, unsigned int buflen,
		int is_user, unsigned long *maskp,
		int nmaskbits)
Linus Torvalds's avatar
Linus Torvalds committed
365 366 367
{
	int c, old_c, totaldigits, ndigits, nchunks, nbits;
	u32 chunk;
368
	const char __user __force *ubuf = (const char __user __force *)buf;
Linus Torvalds's avatar
Linus Torvalds committed
369 370 371 372 373

	bitmap_zero(maskp, nmaskbits);

	nchunks = nbits = totaldigits = c = 0;
	do {
374 375
		chunk = 0;
		ndigits = totaldigits;
Linus Torvalds's avatar
Linus Torvalds committed
376 377

		/* Get the next chunk of the bitmap */
378
		while (buflen) {
Linus Torvalds's avatar
Linus Torvalds committed
379
			old_c = c;
380 381 382 383 384 385 386
			if (is_user) {
				if (__get_user(c, ubuf++))
					return -EFAULT;
			}
			else
				c = *buf++;
			buflen--;
Linus Torvalds's avatar
Linus Torvalds committed
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
			if (isspace(c))
				continue;

			/*
			 * If the last character was a space and the current
			 * character isn't '\0', we've got embedded whitespace.
			 * This is a no-no, so throw an error.
			 */
			if (totaldigits && c && isspace(old_c))
				return -EINVAL;

			/* A '\0' or a ',' signal the end of the chunk */
			if (c == '\0' || c == ',')
				break;

			if (!isxdigit(c))
				return -EINVAL;

			/*
			 * Make sure there are at least 4 free bits in 'chunk'.
			 * If not, this hexdigit will overflow 'chunk', so
			 * throw an error.
			 */
			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
				return -EOVERFLOW;

413
			chunk = (chunk << 4) | hex_to_bin(c);
414
			totaldigits++;
Linus Torvalds's avatar
Linus Torvalds committed
415
		}
416
		if (ndigits == totaldigits)
Linus Torvalds's avatar
Linus Torvalds committed
417 418 419 420 421 422 423 424 425 426
			return -EINVAL;
		if (nchunks == 0 && chunk == 0)
			continue;

		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
		*maskp |= chunk;
		nchunks++;
		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
		if (nbits > nmaskbits)
			return -EOVERFLOW;
427
	} while (buflen && c == ',');
Linus Torvalds's avatar
Linus Torvalds committed
428 429 430

	return 0;
}
431 432 433
EXPORT_SYMBOL(__bitmap_parse);

/**
434
 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Wrapper for __bitmap_parse(), providing it with user buffer.
 *
 * We cannot have this as an inline function in bitmap.h because it needs
 * linux/uaccess.h to get the access_ok() declaration and this causes
 * cyclic dependencies.
 */
int bitmap_parse_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
	if (!access_ok(VERIFY_READ, ubuf, ulen))
		return -EFAULT;
454 455 456
	return __bitmap_parse((const char __force *)ubuf,
				ulen, 1, maskp, nmaskbits);

457 458
}
EXPORT_SYMBOL(bitmap_parse_user);
Linus Torvalds's avatar
Linus Torvalds committed
459

460 461 462 463 464 465 466 467 468 469
/**
 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 * @list: indicates whether the bitmap must be list
 * @buf: page aligned buffer into which string is placed
 * @maskp: pointer to bitmap to convert
 * @nmaskbits: size of bitmap, in bits
 *
 * Output format is a comma-separated list of decimal numbers and
 * ranges if list is specified or hex digits grouped into comma-separated
 * sets of 8 digits/set. Returns the number of characters written to buf.
470 471 472 473
 *
 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 * sufficient storage remains at @buf to accommodate the
 * bitmap_print_to_pagebuf() output.
474 475 476 477
 */
int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
			    int nmaskbits)
{
478
	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
479 480
	int n = 0;

481 482 483
	if (len > 1)
		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
484 485 486 487
	return n;
}
EXPORT_SYMBOL(bitmap_print_to_pagebuf);

Linus Torvalds's avatar
Linus Torvalds committed
488
/**
489
 * __bitmap_parselist - convert list format ASCII string to bitmap
490
 * @buf: read nul-terminated user string from this buffer
491 492 493
 * @buflen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @is_user: location of buffer, 0 indicates kernel space
494
 * @maskp: write resulting mask here
Linus Torvalds's avatar
Linus Torvalds committed
495 496 497 498 499 500
 * @nmaskbits: number of bits in mask to be written
 *
 * Input format is a comma-separated list of decimal numbers and
 * ranges.  Consecutively set bits are shown as two hyphen-separated
 * decimal numbers, the smallest and largest bit numbers set in
 * the range.
501 502 503 504 505
 * Optionally each range can be postfixed to denote that only parts of it
 * should be set. The range will divided to groups of specific size.
 * From each group will be used only defined amount of bits.
 * Syntax: range:used_size/group_size
 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
Linus Torvalds's avatar
Linus Torvalds committed
506
 *
507 508 509 510 511
 * Returns: 0 on success, -errno on invalid input strings. Error values:
 *
 *   - ``-EINVAL``: second number in range smaller than first
 *   - ``-EINVAL``: invalid character in string
 *   - ``-ERANGE``: bit number specified too large for mask
Linus Torvalds's avatar
Linus Torvalds committed
512
 */
513 514 515
static int __bitmap_parselist(const char *buf, unsigned int buflen,
		int is_user, unsigned long *maskp,
		int nmaskbits)
Linus Torvalds's avatar
Linus Torvalds committed
516
{
517
	unsigned int a, b, old_a, old_b;
518
	unsigned int group_size, used_size, off;
519
	int c, old_c, totaldigits, ndigits;
520
	const char __user __force *ubuf = (const char __user __force *)buf;
521
	int at_start, in_range, in_partial_range;
Linus Torvalds's avatar
Linus Torvalds committed
522

523
	totaldigits = c = 0;
524 525
	old_a = old_b = 0;
	group_size = used_size = 0;
Linus Torvalds's avatar
Linus Torvalds committed
526 527
	bitmap_zero(maskp, nmaskbits);
	do {
528
		at_start = 1;
529
		in_range = 0;
530
		in_partial_range = 0;
531
		a = b = 0;
532
		ndigits = totaldigits;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

		/* Get the next cpu# or a range of cpu#'s */
		while (buflen) {
			old_c = c;
			if (is_user) {
				if (__get_user(c, ubuf++))
					return -EFAULT;
			} else
				c = *buf++;
			buflen--;
			if (isspace(c))
				continue;

			/* A '\0' or a ',' signal the end of a cpu# or range */
			if (c == '\0' || c == ',')
				break;
549 550 551 552 553 554 555 556 557 558 559
			/*
			* whitespaces between digits are not allowed,
			* but it's ok if whitespaces are on head or tail.
			* when old_c is whilespace,
			* if totaldigits == ndigits, whitespace is on head.
			* if whitespace is on tail, it should not run here.
			* as c was ',' or '\0',
			* the last code line has broken the current loop.
			*/
			if ((totaldigits != ndigits) && isspace(old_c))
				return -EINVAL;
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
			if (c == '/') {
				used_size = a;
				at_start = 1;
				in_range = 0;
				a = b = 0;
				continue;
			}

			if (c == ':') {
				old_a = a;
				old_b = b;
				at_start = 1;
				in_range = 0;
				in_partial_range = 1;
				a = b = 0;
				continue;
			}

579
			if (c == '-') {
580
				if (at_start || in_range)
581 582 583
					return -EINVAL;
				b = 0;
				in_range = 1;
584
				at_start = 1;
585 586 587 588
				continue;
			}

			if (!isdigit(c))
Linus Torvalds's avatar
Linus Torvalds committed
589
				return -EINVAL;
590 591 592 593

			b = b * 10 + (c - '0');
			if (!in_range)
				a = b;
594
			at_start = 0;
595
			totaldigits++;
Linus Torvalds's avatar
Linus Torvalds committed
596
		}
597 598
		if (ndigits == totaldigits)
			continue;
599 600 601 602 603
		if (in_partial_range) {
			group_size = a;
			a = old_a;
			b = old_b;
			old_a = old_b = 0;
604 605
		} else {
			used_size = group_size = b - a + 1;
606
		}
607 608 609
		/* if no digit is after '-', it's wrong*/
		if (at_start && in_range)
			return -EINVAL;
610
		if (!(a <= b) || !(used_size <= group_size))
Linus Torvalds's avatar
Linus Torvalds committed
611 612 613
			return -EINVAL;
		if (b >= nmaskbits)
			return -ERANGE;
614
		while (a <= b) {
615 616 617
			off = min(b - a + 1, used_size);
			bitmap_set(maskp, a, off);
			a += group_size;
Linus Torvalds's avatar
Linus Torvalds committed
618
		}
619
	} while (buflen && c == ',');
Linus Torvalds's avatar
Linus Torvalds committed
620 621
	return 0;
}
622 623 624

int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
{
625 626
	char *nl  = strchrnul(bp, '\n');
	int len = nl - bp;
627 628 629

	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
}
Linus Torvalds's avatar
Linus Torvalds committed
630 631
EXPORT_SYMBOL(bitmap_parselist);

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

/**
 * bitmap_parselist_user()
 *
 * @ubuf: pointer to user buffer containing string.
 * @ulen: buffer size in bytes.  If string is smaller than this
 *    then it must be terminated with a \0.
 * @maskp: pointer to bitmap array that will contain result.
 * @nmaskbits: size of bitmap, in bits.
 *
 * Wrapper for bitmap_parselist(), providing it with user buffer.
 *
 * We cannot have this as an inline function in bitmap.h because it needs
 * linux/uaccess.h to get the access_ok() declaration and this causes
 * cyclic dependencies.
 */
int bitmap_parselist_user(const char __user *ubuf,
			unsigned int ulen, unsigned long *maskp,
			int nmaskbits)
{
	if (!access_ok(VERIFY_READ, ubuf, ulen))
		return -EFAULT;
654
	return __bitmap_parselist((const char __force *)ubuf,
655 656 657 658 659
					ulen, 1, maskp, nmaskbits);
}
EXPORT_SYMBOL(bitmap_parselist_user);


660
/**
661
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
662
 *	@buf: pointer to a bitmap
663 664
 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 *	@nbits: number of valid bit positions in @buf
665
 *
666
 * Map the bit at position @pos in @buf (of length @nbits) to the
667
 * ordinal of which set bit it is.  If it is not set or if @pos
668
 * is not a valid bit position, map to -1.
669 670 671
 *
 * If for example, just bits 4 through 7 are set in @buf, then @pos
 * values 4 through 7 will get mapped to 0 through 3, respectively,
672
 * and other @pos values will get mapped to -1.  When @pos value 7
673 674 675 676 677
 * gets mapped to (returns) @ord value 3 in this example, that means
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 *
 * The bit positions 0 through @bits are valid positions in @buf.
 */
678
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
679
{
680
	if (pos >= nbits || !test_bit(pos, buf))
681
		return -1;
682

683
	return __bitmap_weight(buf, pos);
684 685 686
}

/**
687
 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
688 689
 *	@buf: pointer to bitmap
 *	@ord: ordinal bit position (n-th set bit, n >= 0)
690
 *	@nbits: number of valid bit positions in @buf
691 692
 *
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
693 694
 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 * >= weight(buf), returns @nbits.
695 696 697
 *
 * If for example, just bits 4 through 7 are set in @buf, then @ord
 * values 0 through 3 will get mapped to 4 through 7, respectively,
698
 * and all other @ord values returns @nbits.  When @ord value 3
699 700 701
 * gets mapped to (returns) @pos value 7 in this example, that means
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 *
702
 * The bit positions 0 through @nbits-1 are valid positions in @buf.
703
 */
704
unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
705
{
706
	unsigned int pos;
707

708 709 710 711
	for (pos = find_first_bit(buf, nbits);
	     pos < nbits && ord;
	     pos = find_next_bit(buf, nbits, pos + 1))
		ord--;
712 713 714 715 716 717 718

	return pos;
}

/**
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 *	@dst: remapped result
719
 *	@src: subset to be remapped
720 721
 *	@old: defines domain of map
 *	@new: defines range of map
722
 *	@nbits: number of bits in each of these bitmaps
723 724 725 726 727 728 729 730
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
731 732 733
 * If either of the @old and @new bitmaps are empty, or if @src and
 * @dst point to the same location, then this routine copies @src
 * to @dst.
734
 *
735 736
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
737 738 739 740 741 742 743
 *
 * Apply the above specified mapping to @src, placing the result in
 * @dst, clearing any bits previously set in @dst.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
744 745 746
 * bit positions unchanged.  So if say @src comes into this routine
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 * 13 and 15 set.
747 748 749
 */
void bitmap_remap(unsigned long *dst, const unsigned long *src,
		const unsigned long *old, const unsigned long *new,
750
		unsigned int nbits)
751
{
752
	unsigned int oldbit, w;
753 754 755

	if (dst == src)		/* following doesn't handle inplace remaps */
		return;
756
	bitmap_zero(dst, nbits);
757

758 759 760
	w = bitmap_weight(new, nbits);
	for_each_set_bit(oldbit, src, nbits) {
		int n = bitmap_pos_to_ord(old, oldbit, nbits);
761

762 763 764
		if (n < 0 || w == 0)
			set_bit(oldbit, dst);	/* identity map */
		else
765
			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
766 767 768 769 770 771
	}
}
EXPORT_SYMBOL(bitmap_remap);

/**
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
772 773 774 775
 *	@oldbit: bit position to be mapped
 *	@old: defines domain of map
 *	@new: defines range of map
 *	@bits: number of bits in each of these bitmaps
776 777 778 779 780 781 782 783
 *
 * Let @old and @new define a mapping of bit positions, such that
 * whatever position is held by the n-th set bit in @old is mapped
 * to the n-th set bit in @new.  In the more general case, allowing
 * for the possibility that the weight 'w' of @new is less than the
 * weight of @old, map the position of the n-th set bit in @old to
 * the position of the m-th set bit in @new, where m == n % w.
 *
784 785
 * The positions of unset bits in @old are mapped to themselves
 * (the identify map).
786 787 788 789 790 791 792
 *
 * Apply the above specified mapping to bit position @oldbit, returning
 * the new bit position.
 *
 * For example, lets say that @old has bits 4 through 7 set, and
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
793 794
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 * returns 13.
795 796 797 798
 */
int bitmap_bitremap(int oldbit, const unsigned long *old,
				const unsigned long *new, int bits)
{
799 800 801 802 803 804
	int w = bitmap_weight(new, bits);
	int n = bitmap_pos_to_ord(old, oldbit, bits);
	if (n < 0 || w == 0)
		return oldbit;
	else
		return bitmap_ord_to_pos(new, n % w, bits);
805 806 807
}
EXPORT_SYMBOL(bitmap_bitremap);

808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * bitmap_onto - translate one bitmap relative to another
 *	@dst: resulting translated bitmap
 * 	@orig: original untranslated bitmap
 * 	@relmap: bitmap relative to which translated
 *	@bits: number of bits in each of these bitmaps
 *
 * Set the n-th bit of @dst iff there exists some m such that the
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 * (If you understood the previous sentence the first time your
 * read it, you're overqualified for your current job.)
 *
 * In other words, @orig is mapped onto (surjectively) @dst,
822
 * using the map { <n, m> | the n-th bit of @relmap is the
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
 * m-th set bit of @relmap }.
 *
 * Any set bits in @orig above bit number W, where W is the
 * weight of (number of set bits in) @relmap are mapped nowhere.
 * In particular, if for all bits m set in @orig, m >= W, then
 * @dst will end up empty.  In situations where the possibility
 * of such an empty result is not desired, one way to avoid it is
 * to use the bitmap_fold() operator, below, to first fold the
 * @orig bitmap over itself so that all its set bits x are in the
 * range 0 <= x < W.  The bitmap_fold() operator does this by
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 *
 * Example [1] for bitmap_onto():
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 *
 *  When bit 0 is set in @orig, it means turn on the bit in
 *  @dst corresponding to whatever is the first bit (if any)
 *  that is turned on in @relmap.  Since bit 0 was off in the
 *  above example, we leave off that bit (bit 30) in @dst.
 *
 *  When bit 1 is set in @orig (as in the above example), it
 *  means turn on the bit in @dst corresponding to whatever
 *  is the second bit that is turned on in @relmap.  The second
 *  bit in @relmap that was turned on in the above example was
 *  bit 31, so we turned on bit 31 in @dst.
 *
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 *  because they were the 4th, 6th, 8th and 10th set bits
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 *
 *  When bit 11 is set in @orig, it means turn on the bit in
857
 *  @dst corresponding to whatever is the twelfth bit that is
858 859 860 861 862
 *  turned on in @relmap.  In the above example, there were
 *  only ten bits turned on in @relmap (30..39), so that bit
 *  11 was set in @orig had no affect on @dst.
 *
 * Example [2] for bitmap_fold() + bitmap_onto():
863 864
 *  Let's say @relmap has these ten bits set::
 *
865
 *		40 41 42 43 45 48 53 61 74 95
866
 *
867 868 869 870 871
 *  (for the curious, that's 40 plus the first ten terms of the
 *  Fibonacci sequence.)
 *
 *  Further lets say we use the following code, invoking
 *  bitmap_fold() then bitmap_onto, as suggested above to
872
 *  avoid the possibility of an empty @dst result::
873 874 875 876 877 878 879 880 881 882
 *
 *	unsigned long *tmp;	// a temporary bitmap's bits
 *
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 *	bitmap_onto(dst, tmp, relmap, bits);
 *
 *  Then this table shows what various values of @dst would be, for
 *  various @orig's.  I list the zero-based positions of each set bit.
 *  The tmp column shows the intermediate result, as computed by
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
883
 *  (the weight of @relmap):
884
 *
885
 *      =============== ============== =================
886 887 888 889
 *      @orig           tmp            @dst
 *      0                0             40
 *      1                1             41
 *      9                9             95
890
 *      10               0             40 [#f1]_
891 892 893 894 895 896
 *      1 3 5 7          1 3 5 7       41 43 48 61
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 *      0 9 18 27        0 9 8 7       40 61 74 95
 *      0 10 20 30       0             40
 *      0 11 22 33       0 1 2 3       40 41 42 43
 *      0 12 24 36       0 2 4 6       40 42 45 53
897 898 899 900
 *      78 102 211       1 2 8         41 42 74 [#f1]_
 *      =============== ============== =================
 *
 * .. [#f1]
901
 *
902
 *     For these marked lines, if we hadn't first done bitmap_fold()
903 904 905 906 907 908 909 910 911 912 913 914
 *     into tmp, then the @dst result would have been empty.
 *
 * If either of @orig or @relmap is empty (no set bits), then @dst
 * will be returned empty.
 *
 * If (as explained above) the only set bits in @orig are in positions
 * m where m >= W, (where W is the weight of @relmap) then @dst will
 * once again be returned empty.
 *
 * All bits in @dst not set by the above rule are cleared.
 */
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
915
			const unsigned long *relmap, unsigned int bits)
916
{
917
	unsigned int n, m;	/* same meaning as in above comment */
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
	bitmap_zero(dst, bits);

	/*
	 * The following code is a more efficient, but less
	 * obvious, equivalent to the loop:
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
	 *		n = bitmap_ord_to_pos(orig, m, bits);
	 *		if (test_bit(m, orig))
	 *			set_bit(n, dst);
	 *	}
	 */

	m = 0;
934
	for_each_set_bit(n, relmap, bits) {
935 936 937 938 939 940 941 942 943 944 945 946 947
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
		if (test_bit(m, orig))
			set_bit(n, dst);
		m++;
	}
}
EXPORT_SYMBOL(bitmap_onto);

/**
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 *	@dst: resulting smaller bitmap
 *	@orig: original larger bitmap
 *	@sz: specified size
948
 *	@nbits: number of bits in each of these bitmaps
949 950 951 952 953 954
 *
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 * Clear all other bits in @dst.  See further the comment and
 * Example [2] for bitmap_onto() for why and how to use this.
 */
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
955
			unsigned int sz, unsigned int nbits)
956
{
957
	unsigned int oldbit;
958 959 960

	if (dst == orig)	/* following doesn't handle inplace mappings */
		return;
961
	bitmap_zero(dst, nbits);
962

963
	for_each_set_bit(oldbit, orig, nbits)
964 965 966 967
		set_bit(oldbit % sz, dst);
}
EXPORT_SYMBOL(bitmap_fold);

968 969 970 971 972 973
/*
 * Common code for bitmap_*_region() routines.
 *	bitmap: array of unsigned longs corresponding to the bitmap
 *	pos: the beginning of the region
 *	order: region size (log base 2 of number of bits)
 *	reg_op: operation(s) to perform on that region of bitmap
Linus Torvalds's avatar
Linus Torvalds committed
974
 *
975 976
 * Can set, verify and/or release a region of bits in a bitmap,
 * depending on which combination of REG_OP_* flag bits is set.
Linus Torvalds's avatar
Linus Torvalds committed
977
 *
978 979 980 981 982 983
 * A region of a bitmap is a sequence of bits in the bitmap, of
 * some size '1 << order' (a power of two), aligned to that same
 * '1 << order' power of two.
 *
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 * Returns 0 in all other cases and reg_ops.
Linus Torvalds's avatar
Linus Torvalds committed
984
 */
985 986 987 988 989 990 991

enum {
	REG_OP_ISFREE,		/* true if region is all zero bits */
	REG_OP_ALLOC,		/* set all bits in region */
	REG_OP_RELEASE,		/* clear all bits in region */
};

992
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
Linus Torvalds's avatar
Linus Torvalds committed
993
{
994 995 996 997
	int nbits_reg;		/* number of bits in region */
	int index;		/* index first long of region in bitmap */
	int offset;		/* bit offset region in bitmap[index] */
	int nlongs_reg;		/* num longs spanned by region in bitmap */
998
	int nbitsinlong;	/* num bits of region in each spanned long */
999
	unsigned long mask;	/* bitmask for one long of region */
1000
	int i;			/* scans bitmap by longs */
1001
	int ret = 0;		/* return value */
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
	 */
	nbits_reg = 1 << order;
	index = pos / BITS_PER_LONG;
	offset = pos - (index * BITS_PER_LONG);
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
Linus Torvalds's avatar
Linus Torvalds committed
1012

1013 1014 1015 1016
	/*
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
	 * overflows if nbitsinlong == BITS_PER_LONG.
	 */
1017
	mask = (1UL << (nbitsinlong - 1));
Linus Torvalds's avatar
Linus Torvalds committed
1018
	mask += mask - 1;
1019
	mask <<= offset;
Linus Torvalds's avatar
Linus Torvalds committed
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	switch (reg_op) {
	case REG_OP_ISFREE:
		for (i = 0; i < nlongs_reg; i++) {
			if (bitmap[index + i] & mask)
				goto done;
		}
		ret = 1;	/* all bits in region free (zero) */
		break;

	case REG_OP_ALLOC:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] |= mask;
		break;

	case REG_OP_RELEASE:
		for (i = 0; i < nlongs_reg; i++)
			bitmap[index + i] &= ~mask;
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1039
	}
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
done:
	return ret;
}

/**
 * bitmap_find_free_region - find a contiguous aligned mem region
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@bits: number of bits in the bitmap
 *	@order: region size (log base 2 of number of bits) to find
 *
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 * allocate them (set them to one).  Only consider regions of length
 * a power (@order) of two, aligned to that power of two, which
 * makes the search algorithm much faster.
 *
 * Return the bit offset in bitmap of the allocated region,
 * or -errno on failure.
 */
1058
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1059
{
1060
	unsigned int pos, end;		/* scans bitmap by regions of size order */
1061

1062
	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1063 1064 1065 1066 1067 1068
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
			continue;
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
		return pos;
	}
	return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
1069 1070 1071 1072
}
EXPORT_SYMBOL(bitmap_find_free_region);

/**
1073
 * bitmap_release_region - release allocated bitmap region
1074 1075 1076
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to release
 *	@order: region size (log base 2 of number of bits) to release
Linus Torvalds's avatar
Linus Torvalds committed
1077
 *
1078
 * This is the complement to __bitmap_find_free_region() and releases
Linus Torvalds's avatar
Linus Torvalds committed
1079
 * the found region (by clearing it in the bitmap).
1080 1081
 *
 * No return value.
Linus Torvalds's avatar
Linus Torvalds committed
1082
 */
1083
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
Linus Torvalds's avatar
Linus Torvalds committed
1084
{
1085
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
Linus Torvalds's avatar
Linus Torvalds committed
1086 1087 1088
}
EXPORT_SYMBOL(bitmap_release_region);

1089 1090
/**
 * bitmap_allocate_region - allocate bitmap region
1091 1092 1093
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 *	@pos: beginning of bit region to allocate
 *	@order: region size (log base 2 of number of bits) to allocate
1094 1095
 *
 * Allocate (set bits in) a specified region of a bitmap.
1096
 *
1097
 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 1099
 * free (not all bits were zero).
 */
1100
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
Linus Torvalds's avatar
Linus Torvalds committed
1101
{
1102 1103
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
		return -EBUSY;
1104
	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
Linus Torvalds's avatar
Linus Torvalds committed
1105 1106
}
EXPORT_SYMBOL(bitmap_allocate_region);
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/**
 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
 *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
 *	@nbits: number of bits in @bitmap
 *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
 *	@nwords: number of u32 words in @buf
 *
 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
 * bits between nword and nbits in @bitmap (if any) are cleared. In
 * last word of @bitmap, the bits beyond nbits (if any) are kept
 * unchanged.
 *
 * Return the number of bits effectively copied.
 */
unsigned int
bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
		     const u32 *buf, unsigned int nwords)
{
	unsigned int dst_idx, src_idx;

	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
		unsigned long part = 0;

		if (src_idx < nwords)
			part = buf[src_idx++];

#if BITS_PER_LONG == 64
		if (src_idx < nwords)
			part |= ((unsigned long) buf[src_idx++]) << 32;
#endif

		if (dst_idx < nbits/BITS_PER_LONG)
			bitmap[dst_idx] = part;
		else {
			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);

			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
				| (part & mask);
		}
	}

	return min_t(unsigned int, nbits, 32*nwords);
}
EXPORT_SYMBOL(bitmap_from_u32array);

/**
 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
 *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
 *	@nwords: number of u32 words in @buf
 *	@bitmap: array of unsigned longs, the source bitmap, non NULL
 *	@nbits: number of bits in @bitmap
 *
 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
 * bits after nbits in @buf (if any) are cleared.
 *
 * Return the number of bits effectively copied.
 */
unsigned int
bitmap_to_u32array(u32 *buf, unsigned int nwords,
		   const unsigned long *bitmap, unsigned int nbits)
{
	unsigned int dst_idx = 0, src_idx = 0;

	while (dst_idx < nwords) {
		unsigned long part = 0;

		if (src_idx < BITS_TO_LONGS(nbits)) {
			part = bitmap[src_idx];
			if (src_idx >= nbits/BITS_PER_LONG)
				part &= BITMAP_LAST_WORD_MASK(nbits);
			src_idx++;
		}

		buf[dst_idx++] = part & 0xffffffffUL;

#if BITS_PER_LONG == 64
		if (dst_idx < nwords) {
			part >>= 32;
			buf[dst_idx++] = part & 0xffffffffUL;
		}
#endif
	}

	return min_t(unsigned int, nbits, 32*nwords);
}
EXPORT_SYMBOL(bitmap_to_u32array);

1195 1196 1197 1198 1199 1200 1201 1202
/**
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 * @dst:   destination buffer
 * @src:   bitmap to copy
 * @nbits: number of bits in the bitmap
 *
 * Require nbits % BITS_PER_LONG == 0.
 */
1203
#ifdef __BIG_ENDIAN
1204
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1205
{
1206
	unsigned int i;
1207 1208 1209

	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
		if (BITS_PER_LONG == 64)
1210
			dst[i] = cpu_to_le64(src[i]);
1211
		else
1212
			dst[i] = cpu_to_le32(src[i]);
1213 1214 1215
	}
}
EXPORT_SYMBOL(bitmap_copy_le);
1216
#endif