scatterlist.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
 *
 * Scatterlist handling helpers.
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2. See the file COPYING for more details.
 */
9
#include <linux/export.h>
10
#include <linux/slab.h>
11
#include <linux/scatterlist.h>
12
#include <linux/highmem.h>
13
#include <linux/kmemleak.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

/**
 * sg_next - return the next scatterlist entry in a list
 * @sg:		The current sg entry
 *
 * Description:
 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 *   of a chained scatterlist, it could jump to the start of a new
 *   scatterlist array.
 *
 **/
struct scatterlist *sg_next(struct scatterlist *sg)
{
#ifdef CONFIG_DEBUG_SG
	BUG_ON(sg->sg_magic != SG_MAGIC);
#endif
	if (sg_is_last(sg))
		return NULL;

	sg++;
	if (unlikely(sg_is_chain(sg)))
		sg = sg_chain_ptr(sg);

	return sg;
}
EXPORT_SYMBOL(sg_next);

41 42 43 44 45 46 47 48 49 50 51
/**
 * sg_nents - return total count of entries in scatterlist
 * @sg:		The scatterlist
 *
 * Description:
 * Allows to know how many entries are in sg, taking into acount
 * chaining as well
 *
 **/
int sg_nents(struct scatterlist *sg)
{
52 53
	int nents;
	for (nents = 0; sg; sg = sg_next(sg))
54 55 56 57 58
		nents++;
	return nents;
}
EXPORT_SYMBOL(sg_nents);

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/**
 * sg_nents_for_len - return total count of entries in scatterlist
 *                    needed to satisfy the supplied length
 * @sg:		The scatterlist
 * @len:	The total required length
 *
 * Description:
 * Determines the number of entries in sg that are required to meet
 * the supplied length, taking into acount chaining as well
 *
 * Returns:
 *   the number of sg entries needed, negative error on failure
 *
 **/
int sg_nents_for_len(struct scatterlist *sg, u64 len)
{
	int nents;
	u64 total;

	if (!len)
		return 0;

	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
		nents++;
		total += sg->length;
		if (total >= len)
			return nents;
	}

	return -EINVAL;
}
EXPORT_SYMBOL(sg_nents_for_len);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/**
 * sg_last - return the last scatterlist entry in a list
 * @sgl:	First entry in the scatterlist
 * @nents:	Number of entries in the scatterlist
 *
 * Description:
 *   Should only be used casually, it (currently) scans the entire list
 *   to get the last entry.
 *
 *   Note that the @sgl@ pointer passed in need not be the first one,
 *   the important bit is that @nents@ denotes the number of entries that
 *   exist from @sgl@.
 *
 **/
struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
{
	struct scatterlist *sg, *ret = NULL;
	unsigned int i;

	for_each_sg(sgl, sg, nents, i)
		ret = sg;

#ifdef CONFIG_DEBUG_SG
	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
	BUG_ON(!sg_is_last(ret));
#endif
	return ret;
}
EXPORT_SYMBOL(sg_last);

/**
 * sg_init_table - Initialize SG table
 * @sgl:	   The SG table
 * @nents:	   Number of entries in table
 *
 * Notes:
 *   If this is part of a chained sg table, sg_mark_end() should be
 *   used only on the last table part.
 *
 **/
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
	memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
	{
		unsigned int i;
		for (i = 0; i < nents; i++)
			sgl[i].sg_magic = SG_MAGIC;
	}
#endif
	sg_mark_end(&sgl[nents - 1]);
}
EXPORT_SYMBOL(sg_init_table);

/**
 * sg_init_one - Initialize a single entry sg list
 * @sg:		 SG entry
 * @buf:	 Virtual address for IO
 * @buflen:	 IO length
 *
 **/
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);

/*
 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 * helpers.
 */
static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
166 167 168 169 170 171 172 173 174 175 176 177 178 179
	if (nents == SG_MAX_SINGLE_ALLOC) {
		/*
		 * Kmemleak doesn't track page allocations as they are not
		 * commonly used (in a raw form) for kernel data structures.
		 * As we chain together a list of pages and then a normal
		 * kmalloc (tracked by kmemleak), in order to for that last
		 * allocation not to become decoupled (and thus a
		 * false-positive) we need to inform kmemleak of all the
		 * intermediate allocations.
		 */
		void *ptr = (void *) __get_free_page(gfp_mask);
		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
		return ptr;
	} else
180 181 182 183 184
		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
}

static void sg_kfree(struct scatterlist *sg, unsigned int nents)
{
185 186
	if (nents == SG_MAX_SINGLE_ALLOC) {
		kmemleak_free(sg);
187
		free_page((unsigned long) sg);
188
	} else
189 190 191 192 193 194
		kfree(sg);
}

/**
 * __sg_free_table - Free a previously mapped sg table
 * @table:	The sg table header to use
195
 * @max_ents:	The maximum number of entries per single scatterlist
196
 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
197 198 199
 * @free_fn:	Free function
 *
 *  Description:
200 201 202
 *    Free an sg table previously allocated and setup with
 *    __sg_alloc_table().  The @max_ents value must be identical to
 *    that previously used with __sg_alloc_table().
203 204
 *
 **/
205
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
206
		     bool skip_first_chunk, sg_free_fn *free_fn)
207 208 209 210 211 212 213 214 215 216 217 218
{
	struct scatterlist *sgl, *next;

	if (unlikely(!table->sgl))
		return;

	sgl = table->sgl;
	while (table->orig_nents) {
		unsigned int alloc_size = table->orig_nents;
		unsigned int sg_size;

		/*
219
		 * If we have more than max_ents segments left,
220 221 222 223
		 * then assign 'next' to the sg table after the current one.
		 * sg_size is then one less than alloc size, since the last
		 * element is the chain pointer.
		 */
224 225 226
		if (alloc_size > max_ents) {
			next = sg_chain_ptr(&sgl[max_ents - 1]);
			alloc_size = max_ents;
227 228 229 230 231 232 233
			sg_size = alloc_size - 1;
		} else {
			sg_size = alloc_size;
			next = NULL;
		}

		table->orig_nents -= sg_size;
234
		if (skip_first_chunk)
235
			skip_first_chunk = false;
236 237
		else
			free_fn(sgl, alloc_size);
238 239 240 241 242 243 244 245 246 247 248 249 250 251
		sgl = next;
	}

	table->sgl = NULL;
}
EXPORT_SYMBOL(__sg_free_table);

/**
 * sg_free_table - Free a previously allocated sg table
 * @table:	The mapped sg table header
 *
 **/
void sg_free_table(struct sg_table *table)
{
252
	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
253 254 255 256 257 258 259
}
EXPORT_SYMBOL(sg_free_table);

/**
 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 * @table:	The sg table header to use
 * @nents:	Number of entries in sg list
260
 * @max_ents:	The maximum number of entries the allocator returns per call
261 262 263
 * @gfp_mask:	GFP allocation mask
 * @alloc_fn:	Allocator to use
 *
264 265 266 267 268 269
 * Description:
 *   This function returns a @table @nents long. The allocator is
 *   defined to return scatterlist chunks of maximum size @max_ents.
 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 *   chained in units of @max_ents.
 *
270 271 272 273 274
 * Notes:
 *   If this function returns non-0 (eg failure), the caller must call
 *   __sg_free_table() to cleanup any leftover allocations.
 *
 **/
275
int __sg_alloc_table(struct sg_table *table, unsigned int nents,
276 277
		     unsigned int max_ents, struct scatterlist *first_chunk,
		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
278 279 280 281
{
	struct scatterlist *sg, *prv;
	unsigned int left;

282 283 284 285
	memset(table, 0, sizeof(*table));

	if (nents == 0)
		return -EINVAL;
286
#ifndef CONFIG_ARCH_HAS_SG_CHAIN
287 288
	if (WARN_ON_ONCE(nents > max_ents))
		return -EINVAL;
289 290 291 292 293 294 295
#endif

	left = nents;
	prv = NULL;
	do {
		unsigned int sg_size, alloc_size = left;

296 297
		if (alloc_size > max_ents) {
			alloc_size = max_ents;
298 299 300 301 302 303
			sg_size = alloc_size - 1;
		} else
			sg_size = alloc_size;

		left -= sg_size;

304 305 306 307 308 309
		if (first_chunk) {
			sg = first_chunk;
			first_chunk = NULL;
		} else {
			sg = alloc_fn(alloc_size, gfp_mask);
		}
310 311 312 313 314 315 316 317 318 319 320 321
		if (unlikely(!sg)) {
			/*
			 * Adjust entry count to reflect that the last
			 * entry of the previous table won't be used for
			 * linkage.  Without this, sg_kfree() may get
			 * confused.
			 */
			if (prv)
				table->nents = ++table->orig_nents;

 			return -ENOMEM;
		}
322 323 324 325 326 327 328 329 330

		sg_init_table(sg, alloc_size);
		table->nents = table->orig_nents += sg_size;

		/*
		 * If this is the first mapping, assign the sg table header.
		 * If this is not the first mapping, chain previous part.
		 */
		if (prv)
331
			sg_chain(prv, max_ents, sg);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		else
			table->sgl = sg;

		/*
		 * If no more entries after this one, mark the end
		 */
		if (!left)
			sg_mark_end(&sg[sg_size - 1]);

		prv = sg;
	} while (left);

	return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);

/**
 * sg_alloc_table - Allocate and initialize an sg table
 * @table:	The sg table header to use
 * @nents:	Number of entries in sg list
 * @gfp_mask:	GFP allocation mask
 *
 *  Description:
 *    Allocate and initialize an sg table. If @nents@ is larger than
 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 *
 **/
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
	int ret;

363
	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
364
			       NULL, gfp_mask, sg_kmalloc);
365
	if (unlikely(ret))
366
		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
367 368 369 370

	return ret;
}
EXPORT_SYMBOL(sg_alloc_table);
371

372
/**
373 374 375 376 377 378 379 380 381
 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
 *			         an array of pages
 * @sgt:	 The sg table header to use
 * @pages:	 Pointer to an array of page pointers
 * @n_pages:	 Number of pages in the pages array
 * @offset:      Offset from start of the first page to the start of a buffer
 * @size:        Number of valid bytes in the buffer (after offset)
 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
 * @gfp_mask:	 GFP allocation mask
382 383 384
 *
 *  Description:
 *    Allocate and initialize an sg table from a list of pages. Contiguous
385 386 387 388
 *    ranges of the pages are squashed into a single scatterlist node up to the
 *    maximum size specified in @max_segment. An user may provide an offset at a
 *    start and a size of valid data in a buffer specified by the page array.
 *    The returned sg table is released by sg_free_table.
389 390 391 392
 *
 * Returns:
 *   0 on success, negative error on failure
 */
393 394 395 396
int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
				unsigned int n_pages, unsigned int offset,
				unsigned long size, unsigned int max_segment,
				gfp_t gfp_mask)
397
{
398
	unsigned int chunks, cur_page, seg_len, i;
399 400 401
	int ret;
	struct scatterlist *s;

402 403 404
	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
		return -EINVAL;

405 406
	/* compute number of contiguous chunks */
	chunks = 1;
407 408 409 410 411 412 413 414 415
	seg_len = 0;
	for (i = 1; i < n_pages; i++) {
		seg_len += PAGE_SIZE;
		if (seg_len >= max_segment ||
		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
			chunks++;
			seg_len = 0;
		}
	}
416 417 418 419 420 421 422 423

	ret = sg_alloc_table(sgt, chunks, gfp_mask);
	if (unlikely(ret))
		return ret;

	/* merging chunks and putting them into the scatterlist */
	cur_page = 0;
	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
424
		unsigned int j, chunk_size;
425 426

		/* look for the end of the current chunk */
427 428 429 430 431
		seg_len = 0;
		for (j = cur_page + 1; j < n_pages; j++) {
			seg_len += PAGE_SIZE;
			if (seg_len >= max_segment ||
			    page_to_pfn(pages[j]) !=
432 433
			    page_to_pfn(pages[j - 1]) + 1)
				break;
434
		}
435 436

		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
437 438
		sg_set_page(s, pages[cur_page],
			    min_t(unsigned long, size, chunk_size), offset);
439 440 441 442 443 444 445
		size -= chunk_size;
		offset = 0;
		cur_page = j;
	}

	return 0;
}
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
EXPORT_SYMBOL(__sg_alloc_table_from_pages);

/**
 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 *			       an array of pages
 * @sgt:	 The sg table header to use
 * @pages:	 Pointer to an array of page pointers
 * @n_pages:	 Number of pages in the pages array
 * @offset:      Offset from start of the first page to the start of a buffer
 * @size:        Number of valid bytes in the buffer (after offset)
 * @gfp_mask:	 GFP allocation mask
 *
 *  Description:
 *    Allocate and initialize an sg table from a list of pages. Contiguous
 *    ranges of the pages are squashed into a single scatterlist node. A user
 *    may provide an offset at a start and a size of valid data in a buffer
 *    specified by the page array. The returned sg table is released by
 *    sg_free_table.
 *
 * Returns:
 *   0 on success, negative error on failure
 */
int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
			      unsigned int n_pages, unsigned int offset,
			      unsigned long size, gfp_t gfp_mask)
{
	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
}
475 476
EXPORT_SYMBOL(sg_alloc_table_from_pages);

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
#ifdef CONFIG_SGL_ALLOC

/**
 * sgl_alloc_order - allocate a scatterlist and its pages
 * @length: Length in bytes of the scatterlist. Must be at least one
 * @order: Second argument for alloc_pages()
 * @chainable: Whether or not to allocate an extra element in the scatterlist
 *	for scatterlist chaining purposes
 * @gfp: Memory allocation flags
 * @nent_p: [out] Number of entries in the scatterlist that have pages
 *
 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 */
struct scatterlist *sgl_alloc_order(unsigned long long length,
				    unsigned int order, bool chainable,
				    gfp_t gfp, unsigned int *nent_p)
{
	struct scatterlist *sgl, *sg;
	struct page *page;
	unsigned int nent, nalloc;
	u32 elem_len;

	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
	/* Check for integer overflow */
	if (length > (nent << (PAGE_SHIFT + order)))
		return NULL;
	nalloc = nent;
	if (chainable) {
		/* Check for integer overflow */
		if (nalloc + 1 < nalloc)
			return NULL;
		nalloc++;
	}
	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
			    (gfp & ~GFP_DMA) | __GFP_ZERO);
	if (!sgl)
		return NULL;

515
	sg_init_table(sgl, nalloc);
516 517 518 519 520 521 522 523 524 525 526 527 528
	sg = sgl;
	while (length) {
		elem_len = min_t(u64, length, PAGE_SIZE << order);
		page = alloc_pages(gfp, order);
		if (!page) {
			sgl_free(sgl);
			return NULL;
		}

		sg_set_page(sg, page, elem_len, 0);
		length -= elem_len;
		sg = sg_next(sg);
	}
529
	WARN_ONCE(length, "length = %lld\n", length);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	if (nent_p)
		*nent_p = nent;
	return sgl;
}
EXPORT_SYMBOL(sgl_alloc_order);

/**
 * sgl_alloc - allocate a scatterlist and its pages
 * @length: Length in bytes of the scatterlist
 * @gfp: Memory allocation flags
 * @nent_p: [out] Number of entries in the scatterlist
 *
 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 */
struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
			      unsigned int *nent_p)
{
	return sgl_alloc_order(length, 0, false, gfp, nent_p);
}
EXPORT_SYMBOL(sgl_alloc);

/**
552
 * sgl_free_n_order - free a scatterlist and its pages
553
 * @sgl: Scatterlist with one or more elements
554
 * @nents: Maximum number of elements to free
555
 * @order: Second argument for __free_pages()
556 557 558 559 560 561 562
 *
 * Notes:
 * - If several scatterlists have been chained and each chain element is
 *   freed separately then it's essential to set nents correctly to avoid that a
 *   page would get freed twice.
 * - All pages in a chained scatterlist can be freed at once by setting @nents
 *   to a high number.
563
 */
564
void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
565 566 567
{
	struct scatterlist *sg;
	struct page *page;
568
	int i;
569

570 571 572
	for_each_sg(sgl, sg, nents, i) {
		if (!sg)
			break;
573 574 575 576 577 578
		page = sg_page(sg);
		if (page)
			__free_pages(page, order);
	}
	kfree(sgl);
}
579 580 581 582 583 584 585 586 587 588 589
EXPORT_SYMBOL(sgl_free_n_order);

/**
 * sgl_free_order - free a scatterlist and its pages
 * @sgl: Scatterlist with one or more elements
 * @order: Second argument for __free_pages()
 */
void sgl_free_order(struct scatterlist *sgl, int order)
{
	sgl_free_n_order(sgl, INT_MAX, order);
}
590 591 592 593 594 595 596 597 598 599 600 601 602 603
EXPORT_SYMBOL(sgl_free_order);

/**
 * sgl_free - free a scatterlist and its pages
 * @sgl: Scatterlist with one or more elements
 */
void sgl_free(struct scatterlist *sgl)
{
	sgl_free_order(sgl, 0);
}
EXPORT_SYMBOL(sgl_free);

#endif /* CONFIG_SGL_ALLOC */

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
void __sg_page_iter_start(struct sg_page_iter *piter,
			  struct scatterlist *sglist, unsigned int nents,
			  unsigned long pgoffset)
{
	piter->__pg_advance = 0;
	piter->__nents = nents;

	piter->sg = sglist;
	piter->sg_pgoffset = pgoffset;
}
EXPORT_SYMBOL(__sg_page_iter_start);

static int sg_page_count(struct scatterlist *sg)
{
	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
}

bool __sg_page_iter_next(struct sg_page_iter *piter)
{
	if (!piter->__nents || !piter->sg)
		return false;

	piter->sg_pgoffset += piter->__pg_advance;
	piter->__pg_advance = 1;

	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
		piter->sg_pgoffset -= sg_page_count(piter->sg);
		piter->sg = sg_next(piter->sg);
		if (!--piter->__nents || !piter->sg)
			return false;
	}

	return true;
}
EXPORT_SYMBOL(__sg_page_iter_next);

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/**
 * sg_miter_start - start mapping iteration over a sg list
 * @miter: sg mapping iter to be started
 * @sgl: sg list to iterate over
 * @nents: number of sg entries
 *
 * Description:
 *   Starts mapping iterator @miter.
 *
 * Context:
 *   Don't care.
 */
void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
		    unsigned int nents, unsigned int flags)
{
	memset(miter, 0, sizeof(struct sg_mapping_iter));

657
	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
658
	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
659 660 661 662
	miter->__flags = flags;
}
EXPORT_SYMBOL(sg_miter_start);

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
{
	if (!miter->__remaining) {
		struct scatterlist *sg;
		unsigned long pgoffset;

		if (!__sg_page_iter_next(&miter->piter))
			return false;

		sg = miter->piter.sg;
		pgoffset = miter->piter.sg_pgoffset;

		miter->__offset = pgoffset ? 0 : sg->offset;
		miter->__remaining = sg->offset + sg->length -
				(pgoffset << PAGE_SHIFT) - miter->__offset;
		miter->__remaining = min_t(unsigned long, miter->__remaining,
					   PAGE_SIZE - miter->__offset);
	}

	return true;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * sg_miter_skip - reposition mapping iterator
 * @miter: sg mapping iter to be skipped
 * @offset: number of bytes to plus the current location
 *
 * Description:
 *   Sets the offset of @miter to its current location plus @offset bytes.
 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 *   stops @miter.
 *
 * Context:
 *   Don't care if @miter is stopped, or not proceeded yet.
 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 *
 * Returns:
 *   true if @miter contains the valid mapping.  false if end of sg
 *   list is reached.
 */
703
bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
{
	sg_miter_stop(miter);

	while (offset) {
		off_t consumed;

		if (!sg_miter_get_next_page(miter))
			return false;

		consumed = min_t(off_t, offset, miter->__remaining);
		miter->__offset += consumed;
		miter->__remaining -= consumed;
		offset -= consumed;
	}

	return true;
}
721
EXPORT_SYMBOL(sg_miter_skip);
722

723 724 725 726 727
/**
 * sg_miter_next - proceed mapping iterator to the next mapping
 * @miter: sg mapping iter to proceed
 *
 * Description:
728 729 730
 *   Proceeds @miter to the next mapping.  @miter should have been started
 *   using sg_miter_start().  On successful return, @miter->page,
 *   @miter->addr and @miter->length point to the current mapping.
731 732
 *
 * Context:
733 734
 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
735 736 737 738 739 740 741 742 743
 *
 * Returns:
 *   true if @miter contains the next mapping.  false if end of sg
 *   list is reached.
 */
bool sg_miter_next(struct sg_mapping_iter *miter)
{
	sg_miter_stop(miter);

744 745 746 747
	/*
	 * Get to the next page if necessary.
	 * __remaining, __offset is adjusted by sg_miter_stop
	 */
748 749
	if (!sg_miter_get_next_page(miter))
		return false;
750

751
	miter->page = sg_page_iter_page(&miter->piter);
752
	miter->consumed = miter->length = miter->__remaining;
753 754

	if (miter->__flags & SG_MITER_ATOMIC)
755
		miter->addr = kmap_atomic(miter->page) + miter->__offset;
756
	else
757
		miter->addr = kmap(miter->page) + miter->__offset;
758 759 760 761 762 763 764 765 766 767 768

	return true;
}
EXPORT_SYMBOL(sg_miter_next);

/**
 * sg_miter_stop - stop mapping iteration
 * @miter: sg mapping iter to be stopped
 *
 * Description:
 *   Stops mapping iterator @miter.  @miter should have been started
769 770 771
 *   using sg_miter_start().  A stopped iteration can be resumed by
 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 *   need to be released during iteration.
772 773
 *
 * Context:
774 775
 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 *   otherwise.
776 777 778 779 780 781 782 783
 */
void sg_miter_stop(struct sg_mapping_iter *miter)
{
	WARN_ON(miter->consumed > miter->length);

	/* drop resources from the last iteration */
	if (miter->addr) {
		miter->__offset += miter->consumed;
784
		miter->__remaining -= miter->consumed;
785

786 787
		if ((miter->__flags & SG_MITER_TO_SG) &&
		    !PageSlab(miter->page))
788 789
			flush_kernel_dcache_page(miter->page);

790
		if (miter->__flags & SG_MITER_ATOMIC) {
791
			WARN_ON_ONCE(preemptible());
792
			kunmap_atomic(miter->addr);
793
		} else
794
			kunmap(miter->page);
795 796 797 798 799 800 801 802 803

		miter->page = NULL;
		miter->addr = NULL;
		miter->length = 0;
		miter->consumed = 0;
	}
}
EXPORT_SYMBOL(sg_miter_stop);

804 805 806 807 808 809
/**
 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy from
 * @buflen:		 The number of bytes to copy
810 811 812
 * @skip:		 Number of bytes to skip before copying
 * @to_buffer:		 transfer direction (true == from an sg list to a
 *			 buffer, false == from a buffer to an sg list
813 814 815 816
 *
 * Returns the number of copied bytes.
 *
 **/
817 818
size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
		      size_t buflen, off_t skip, bool to_buffer)
819
{
820 821
	unsigned int offset = 0;
	struct sg_mapping_iter miter;
822 823 824 825 826 827
	unsigned int sg_flags = SG_MITER_ATOMIC;

	if (to_buffer)
		sg_flags |= SG_MITER_FROM_SG;
	else
		sg_flags |= SG_MITER_TO_SG;
828

829
	sg_miter_start(&miter, sgl, nents, sg_flags);
830

831 832 833
	if (!sg_miter_skip(&miter, skip))
		return false;

834
	while ((offset < buflen) && sg_miter_next(&miter)) {
835 836 837 838 839 840
		unsigned int len;

		len = min(miter.length, buflen - offset);

		if (to_buffer)
			memcpy(buf + offset, miter.addr, len);
841
		else
842
			memcpy(miter.addr, buf + offset, len);
843

844
		offset += len;
845 846
	}

847 848 849
	sg_miter_stop(&miter);

	return offset;
850
}
851
EXPORT_SYMBOL(sg_copy_buffer);
852 853 854 855 856 857 858 859 860 861 862 863

/**
 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy from
 * @buflen:		 The number of bytes to copy
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
864
			   const void *buf, size_t buflen)
865
{
866
	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
}
EXPORT_SYMBOL(sg_copy_from_buffer);

/**
 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy to
 * @buflen:		 The number of bytes to copy
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
			 void *buf, size_t buflen)
{
883
	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
884 885
}
EXPORT_SYMBOL(sg_copy_to_buffer);
886 887 888 889 890 891 892

/**
 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy from
 * @buflen:		 The number of bytes to copy
893
 * @skip:		 Number of bytes to skip before copying
894 895 896 897 898
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
899
			    const void *buf, size_t buflen, off_t skip)
900
{
901
	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
902 903 904 905 906 907 908 909 910
}
EXPORT_SYMBOL(sg_pcopy_from_buffer);

/**
 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy to
 * @buflen:		 The number of bytes to copy
911
 * @skip:		 Number of bytes to skip before copying
912 913 914 915 916 917 918 919 920 921
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
			  void *buf, size_t buflen, off_t skip)
{
	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
}
EXPORT_SYMBOL(sg_pcopy_to_buffer);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

/**
 * sg_zero_buffer - Zero-out a part of a SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buflen:		 The number of bytes to zero out
 * @skip:		 Number of bytes to skip before zeroing
 *
 * Returns the number of bytes zeroed.
 **/
size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
		       size_t buflen, off_t skip)
{
	unsigned int offset = 0;
	struct sg_mapping_iter miter;
	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;

	sg_miter_start(&miter, sgl, nents, sg_flags);

	if (!sg_miter_skip(&miter, skip))
		return false;

	while (offset < buflen && sg_miter_next(&miter)) {
		unsigned int len;

		len = min(miter.length, buflen - offset);
		memset(miter.addr, 0, len);

		offset += len;
	}

	sg_miter_stop(&miter);
	return offset;
}
EXPORT_SYMBOL(sg_zero_buffer);