klist.c 6.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 *	klist.c - Routines for manipulating klists.
 *
 *
 *	This klist interface provides a couple of structures that wrap around 
 *	struct list_head to provide explicit list "head" (struct klist) and 
 *	list "node" (struct klist_node) objects. For struct klist, a spinlock
 *	is included that protects access to the actual list itself. struct 
 *	klist_node provides a pointer to the klist that owns it and a kref
 *	reference count that indicates the number of current users of that node
 *	in the list.
 *
 *	The entire point is to provide an interface for iterating over a list
 *	that is safe and allows for modification of the list during the
 *	iteration (e.g. insertion and removal), including modification of the
 *	current node on the list.
 *
 *	It works using a 3rd object type - struct klist_iter - that is declared
 *	and initialized before an iteration. klist_next() is used to acquire the
 *	next element in the list. It returns NULL if there are no more items.
 *	Internally, that routine takes the klist's lock, decrements the reference
 *	count of the previous klist_node and increments the count of the next
 *	klist_node. It then drops the lock and returns.
 *
 *	There are primitives for adding and removing nodes to/from a klist. 
 *	When deleting, klist_del() will simply decrement the reference count. 
 *	Only when the count goes to 0 is the node removed from the list. 
 *	klist_remove() will try to delete the node from the list and block
 *	until it is actually removed. This is useful for objects (like devices)
 *	that have been removed from the system and must be freed (but must wait
 *	until all accessors have finished).
 *
 *	Copyright (C) 2005 Patrick Mochel
 *
 *	This file is released under the GPL v2.
 */

#include <linux/klist.h>
#include <linux/module.h>


/**
 *	klist_init - Initialize a klist structure. 
 *	@k:	The klist we're initializing.
45 46 47 48 49 50 51 52
 *	@get:	The get function for the embedding object (NULL if none)
 *	@put:	The put function for the embedding object (NULL if none)
 *
 * Initialises the klist structure.  If the klist_node structures are
 * going to be embedded in refcounted objects (necessary for safe
 * deletion) then the get/put arguments are used to initialise
 * functions that take and release references on the embedding
 * objects.
53 54
 */

55 56
void klist_init(struct klist * k, void (*get)(struct klist_node *),
		void (*put)(struct klist_node *))
57 58 59
{
	INIT_LIST_HEAD(&k->k_list);
	spin_lock_init(&k->k_lock);
60 61
	k->get = get;
	k->put = put;
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
}

EXPORT_SYMBOL_GPL(klist_init);


static void add_head(struct klist * k, struct klist_node * n)
{
	spin_lock(&k->k_lock);
	list_add(&n->n_node, &k->k_list);
	spin_unlock(&k->k_lock);
}

static void add_tail(struct klist * k, struct klist_node * n)
{
	spin_lock(&k->k_lock);
	list_add_tail(&n->n_node, &k->k_list);
	spin_unlock(&k->k_lock);
}


static void klist_node_init(struct klist * k, struct klist_node * n)
{
	INIT_LIST_HEAD(&n->n_node);
	init_completion(&n->n_removed);
	kref_init(&n->n_ref);
	n->n_klist = k;
88 89
	if (k->get)
		k->get(n);
90 91 92 93 94 95
}


/**
 *	klist_add_head - Initialize a klist_node and add it to front.
 *	@n:	node we're adding.
96
 *	@k:	klist it's going on.
97 98
 */

99
void klist_add_head(struct klist_node * n, struct klist * k)
100 101 102 103 104 105 106 107 108 109 110
{
	klist_node_init(k, n);
	add_head(k, n);
}

EXPORT_SYMBOL_GPL(klist_add_head);


/**
 *	klist_add_tail - Initialize a klist_node and add it to back.
 *	@n:	node we're adding.
111
 *	@k:	klist it's going on.
112 113
 */

114
void klist_add_tail(struct klist_node * n, struct klist * k)
115 116 117 118 119 120 121 122 123 124 125
{
	klist_node_init(k, n);
	add_tail(k, n);
}

EXPORT_SYMBOL_GPL(klist_add_tail);


static void klist_release(struct kref * kref)
{
	struct klist_node * n = container_of(kref, struct klist_node, n_ref);
126
	void (*put)(struct klist_node *) = n->n_klist->put;
127 128
	list_del(&n->n_node);
	complete(&n->n_removed);
129
	n->n_klist = NULL;
130 131
	if (put)
		put(n);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

static int klist_dec_and_del(struct klist_node * n)
{
	return kref_put(&n->n_ref, klist_release);
}


/**
 *	klist_del - Decrement the reference count of node and try to remove.
 *	@n:	node we're deleting.
 */

void klist_del(struct klist_node * n)
{
	struct klist * k = n->n_klist;

	spin_lock(&k->k_lock);
	klist_dec_and_del(n);
	spin_unlock(&k->k_lock);
}

EXPORT_SYMBOL_GPL(klist_del);


/**
 *	klist_remove - Decrement the refcount of node and wait for it to go away.
 *	@n:	node we're removing.
 */

void klist_remove(struct klist_node * n)
{
164 165
	struct klist * k = n->n_klist;
	spin_lock(&k->k_lock);
166
	klist_dec_and_del(n);
167
	spin_unlock(&k->k_lock);
168 169 170 171 172 173
	wait_for_completion(&n->n_removed);
}

EXPORT_SYMBOL_GPL(klist_remove);


174 175 176 177 178 179 180 181 182 183 184 185 186
/**
 *	klist_node_attached - Say whether a node is bound to a list or not.
 *	@n:	Node that we're testing.
 */

int klist_node_attached(struct klist_node * n)
{
	return (n->n_klist != NULL);
}

EXPORT_SYMBOL_GPL(klist_node_attached);


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/**
 *	klist_iter_init_node - Initialize a klist_iter structure.
 *	@k:	klist we're iterating.
 *	@i:	klist_iter we're filling.
 *	@n:	node to start with.
 *
 *	Similar to klist_iter_init(), but starts the action off with @n, 
 *	instead of with the list head.
 */

void klist_iter_init_node(struct klist * k, struct klist_iter * i, struct klist_node * n)
{
	i->i_klist = k;
	i->i_head = &k->k_list;
	i->i_cur = n;
202 203
	if (n)
		kref_get(&n->n_ref);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

EXPORT_SYMBOL_GPL(klist_iter_init_node);


/**
 *	klist_iter_init - Iniitalize a klist_iter structure.
 *	@k:	klist we're iterating.
 *	@i:	klist_iter structure we're filling.
 *
 *	Similar to klist_iter_init_node(), but start with the list head.
 */

void klist_iter_init(struct klist * k, struct klist_iter * i)
{
	klist_iter_init_node(k, i, NULL);
}

EXPORT_SYMBOL_GPL(klist_iter_init);


/**
 *	klist_iter_exit - Finish a list iteration.
 *	@i:	Iterator structure.
 *
 *	Must be called when done iterating over list, as it decrements the 
 *	refcount of the current node. Necessary in case iteration exited before
 *	the end of the list was reached, and always good form.
 */

void klist_iter_exit(struct klist_iter * i)
{
	if (i->i_cur) {
		klist_del(i->i_cur);
		i->i_cur = NULL;
	}
}

EXPORT_SYMBOL_GPL(klist_iter_exit);


static struct klist_node * to_klist_node(struct list_head * n)
{
	return container_of(n, struct klist_node, n_node);
}


/**
 *	klist_next - Ante up next node in list.
 *	@i:	Iterator structure.
 *
 *	First grab list lock. Decrement the reference count of the previous
 *	node, if there was one. Grab the next node, increment its reference 
 *	count, drop the lock, and return that next node.
 */

struct klist_node * klist_next(struct klist_iter * i)
{
	struct list_head * next;
	struct klist_node * knode = NULL;

	spin_lock(&i->i_klist->k_lock);
	if (i->i_cur) {
		next = i->i_cur->n_node.next;
		klist_dec_and_del(i->i_cur);
	} else
		next = i->i_head->next;

	if (next != i->i_head) {
		knode = to_klist_node(next);
		kref_get(&knode->n_ref);
	}
	i->i_cur = knode;
	spin_unlock(&i->i_klist->k_lock);
	return knode;
}

EXPORT_SYMBOL_GPL(klist_next);
282 283