qemu-tech.texi 22.9 KB
Newer Older
bellard's avatar
bellard committed
\input texinfo @c -*- texinfo -*-
2 3
@c %**start of header
@setfilename qemu-tech.info
4 5 6 7

@documentlanguage en
@documentencoding UTF-8

8 9 10 11
@settitle QEMU Internals
@exampleindent 0
@paragraphindent 0
@c %**end of header
bellard's avatar
bellard committed

13 14 15 16 17 18
* QEMU Internals: (qemu-tech).   The QEMU Emulator Internals.
@end direntry
@end ifinfo

bellard's avatar
bellard committed
19 20 21 22 23 24 25 26
@sp 7
@center @titlefont{QEMU Internals}
@sp 3
@end titlepage
@end iftex

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
@node Top

* Introduction::
* QEMU Internals::
* Regression Tests::
* Index::
@end menu
@end ifnottex


@node Introduction
bellard's avatar
bellard committed
42 43
@chapter Introduction

45 46 47 48 49 50 51 52
* intro_features::         Features
* intro_x86_emulation::    x86 and x86-64 emulation
* intro_arm_emulation::    ARM emulation
* intro_mips_emulation::   MIPS emulation
* intro_ppc_emulation::    PowerPC emulation
* intro_sparc_emulation::  Sparc32 and Sparc64 emulation
* intro_xtensa_emulation:: Xtensa emulation
* intro_other_emulation::  Other CPU emulation
53 54 55
@end menu

@node intro_features
bellard's avatar
bellard committed
56 57 58 59 60 61 62 63 64
@section Features

QEMU is a FAST! processor emulator using a portable dynamic

QEMU has two operating modes:

@itemize @minus

66 67 68 69 70
Full system emulation. In this mode (full platform virtualization),
QEMU emulates a full system (usually a PC), including a processor and
various peripherals. It can be used to launch several different
Operating Systems at once without rebooting the host machine or to
debug system code.
bellard's avatar
bellard committed

73 74 75 76
User mode emulation. In this mode (application level virtualization),
QEMU can launch processes compiled for one CPU on another CPU, however
the Operating Systems must match. This can be used for example to ease
cross-compilation and cross-debugging.
bellard's avatar
bellard committed
77 78 79 80 81 82 83
@end itemize

As QEMU requires no host kernel driver to run, it is very safe and
easy to use.

QEMU generic features:

bellard's avatar
bellard committed
85 86 87

@item User space only or full system emulation.

@item Using dynamic translation to native code for reasonable speed.
bellard's avatar
bellard committed

90 91 92 93
Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
HPPA, Sparc32 and Sparc64. Previous versions had some support for
Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
bellard's avatar
bellard committed
94 95 96 97 98

@item Self-modifying code support.

@item Precise exceptions support.

99 100 101 102
Floating point library supporting both full software emulation and
native host FPU instructions.

bellard's avatar
bellard committed
103 104 105
@end itemize

QEMU user mode emulation features:
bellard's avatar
bellard committed
107 108 109 110
@item Generic Linux system call converter, including most ioctls.

@item clone() emulation using native CPU clone() to use Linux scheduler for threads.

@item Accurate signal handling by remapping host signals to target signals.
bellard's avatar
bellard committed
112 113
@end itemize

Linux user emulator (Linux host only) can be used to launch the Wine
Andreas Färber's avatar
Andreas Färber committed
Windows API emulator (@url{http://www.winehq.org}). A BSD user emulator for BSD
116 117 118
hosts is under development. It would also be possible to develop a
similar user emulator for Solaris.

bellard's avatar
bellard committed
QEMU full system emulation features:
121 122 123 124
QEMU uses a full software MMU for maximum portability.

125 126
QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
execute some of the guest code natively, while
127 128 129 130 131 132 133 134 135 136 137 138 139 140
continuing to emulate the rest of the machine.

Various hardware devices can be emulated and in some cases, host
devices (e.g. serial and parallel ports, USB, drives) can be used
transparently by the guest Operating System. Host device passthrough
can be used for talking to external physical peripherals (e.g. a
webcam, modem or tape drive).

Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
SMP host system, QEMU can use only one CPU fully due to difficulty in
implementing atomic memory accesses efficiently.

bellard's avatar
bellard committed
141 142
@end itemize

@node intro_x86_emulation
@section x86 and x86-64 emulation
bellard's avatar
bellard committed
145 146 147

QEMU x86 target features:

bellard's avatar
bellard committed

@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
151 152 153
LDT/GDT and IDT are emulated. VM86 mode is also supported to run
DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
and SSE4 as well as x86-64 SVM.
bellard's avatar
bellard committed
154 155 156 157 158

@item Support of host page sizes bigger than 4KB in user mode emulation.

@item QEMU can emulate itself on x86.

@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
bellard's avatar
bellard committed
160 161 162 163 164 165
It can be used to test other x86 virtual CPUs.

@end itemize

Current QEMU limitations:

bellard's avatar
bellard committed

@item Limited x86-64 support.
bellard's avatar
bellard committed
169 170 171

@item IPC syscalls are missing.

@item The x86 segment limits and access rights are not tested at every
bellard's avatar
bellard committed
173 174 175 176 177
memory access (yet). Hopefully, very few OSes seem to rely on that for
normal use.

@end itemize

@node intro_arm_emulation
bellard's avatar
bellard committed
179 180 181 182 183 184 185 186 187 188 189 190
@section ARM emulation


@item Full ARM 7 user emulation.

@item NWFPE FPU support included in user Linux emulation.

@item Can run most ARM Linux binaries.

@end itemize

ths's avatar
ths committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
@node intro_mips_emulation
@section MIPS emulation


@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
including privileged instructions, FPU and MMU, in both little and big
endian modes.

@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.

@end itemize

Current QEMU limitations:


@item Self-modifying code is not always handled correctly.

@item 64 bit userland emulation is not implemented.

@item The system emulation is not complete enough to run real firmware.

214 215
@item The watchpoint debug facility is not implemented.

ths's avatar
ths committed
216 217
@end itemize

@node intro_ppc_emulation
bellard's avatar
bellard committed
219 220 221 222
@section PowerPC emulation


@item Full PowerPC 32 bit emulation, including privileged instructions,
bellard's avatar
bellard committed
224 225 226 227 228 229
FPU and MMU.

@item Can run most PowerPC Linux binaries.

@end itemize

@node intro_sparc_emulation
@section Sparc32 and Sparc64 emulation
bellard's avatar
bellard committed
232 233 234


blueswir1's avatar
blueswir1 committed
@item Full SPARC V8 emulation, including privileged
bellard's avatar
bellard committed
instructions, FPU and MMU. SPARC V9 emulation includes most privileged
and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
bellard's avatar
bellard committed

239 240
@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
some 64-bit SPARC Linux binaries.
bellard's avatar
bellard committed
241 242 243 244 245

@end itemize

Current QEMU limitations:

bellard's avatar
bellard committed
247 248 249

@item IPC syscalls are missing.

@item Floating point exception support is buggy.
bellard's avatar
bellard committed
251 252 253

@item Atomic instructions are not correctly implemented.

254 255 256 257
@item There are still some problems with Sparc64 emulators.

@end itemize

258 259 260 261 262 263 264
@node intro_xtensa_emulation
@section Xtensa emulation


@item Core Xtensa ISA emulation, including most options: code density,
loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
265 266
MAC16, miscellaneous operations, boolean, FP coprocessor, coprocessor
context, debug, multiprocessor synchronization,
267 268 269 270 271
conditional store, exceptions, relocatable vectors, unaligned exception,
interrupts (including high priority and timer), hardware alignment,
region protection, region translation, MMU, windowed registers, thread
pointer, processor ID.

272 273 274
@item Not implemented options: data/instruction cache (including cache
prefetch and locking), XLMI, processor interface. Also options not
covered by the core ISA (e.g. FLIX, wide branches) are not implemented.
275 276 277 278 279 280 281 282

@item Can run most Xtensa Linux binaries.

@item New core configuration that requires no additional instructions
may be created from overlay with minimal amount of hand-written code.

@end itemize

283 284
@node intro_other_emulation
@section Other CPU emulation
bellard's avatar
bellard committed

286 287 288 289 290 291 292 293 294 295 296 297 298
In addition to the above, QEMU supports emulation of other CPUs with
varying levels of success. These are:


bellard's avatar
bellard committed
299 300
@end itemize

@node QEMU Internals
bellard's avatar
bellard committed
302 303
@chapter QEMU Internals

304 305 306 307 308 309 310 311 312 313
* QEMU compared to other emulators::
* Portable dynamic translation::
* Condition code optimisations::
* CPU state optimisations::
* Translation cache::
* Direct block chaining::
* Self-modifying code and translated code invalidation::
* Exception support::
* MMU emulation::
* Device emulation::
315 316 317 318 319 320
* Hardware interrupts::
* User emulation specific details::
* Bibliography::
@end menu

@node QEMU compared to other emulators
bellard's avatar
bellard committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
@section QEMU compared to other emulators

Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
emulation while QEMU can emulate several processors.

Like Valgrind [2], QEMU does user space emulation and dynamic
translation. Valgrind is mainly a memory debugger while QEMU has no
support for it (QEMU could be used to detect out of bound memory
accesses as Valgrind, but it has no support to track uninitialised data
as Valgrind does). The Valgrind dynamic translator generates better code
than QEMU (in particular it does register allocation) but it is closely
tied to an x86 host and target and has no support for precise exceptions
and system emulation.

EM86 [4] is the closest project to user space QEMU (and QEMU still uses
some of its code, in particular the ELF file loader). EM86 was limited
to an alpha host and used a proprietary and slow interpreter (the
interpreter part of the FX!32 Digital Win32 code translator [5]).

TWIN [6] is a Windows API emulator like Wine. It is less accurate than
Wine but includes a protected mode x86 interpreter to launch x86 Windows
bellard's avatar
bellard committed
executables. Such an approach has greater potential because most of the
bellard's avatar
bellard committed
344 345 346 347 348 349 350 351 352 353
Windows API is executed natively but it is far more difficult to develop
because all the data structures and function parameters exchanged
between the API and the x86 code must be converted.

User mode Linux [7] was the only solution before QEMU to launch a
Linux kernel as a process while not needing any host kernel
patches. However, user mode Linux requires heavy kernel patches while
QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is

354 355 356 357 358 359 360
The Plex86 [8] PC virtualizer is done in the same spirit as the now
obsolete qemu-fast system emulator. It requires a patched Linux kernel
to work (you cannot launch the same kernel on your PC), but the
patches are really small. As it is a PC virtualizer (no emulation is
done except for some privileged instructions), it has the potential of
being faster than QEMU. The downside is that a complicated (and
potentially unsafe) host kernel patch is needed.
bellard's avatar
bellard committed
361 362 363 364 365 366

The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
[11]) are faster than QEMU, but they all need specific, proprietary
and potentially unsafe host drivers. Moreover, they are unable to
provide cycle exact simulation as an emulator can.

367 368 369 370
VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
[15] uses QEMU to simulate a system where some hardware devices are
developed in SystemC.

@node Portable dynamic translation
bellard's avatar
bellard committed
372 373 374 375 376 377 378 379
@section Portable dynamic translation

QEMU is a dynamic translator. When it first encounters a piece of code,
it converts it to the host instruction set. Usually dynamic translators
are very complicated and highly CPU dependent. QEMU uses some tricks
which make it relatively easily portable and simple while achieving good

380 381 382 383 384 385 386 387 388 389
After the release of version 0.9.1, QEMU switched to a new method of
generating code, Tiny Code Generator or TCG. TCG relaxes the
dependency on the exact version of the compiler used. The basic idea
is to split every target instruction into a couple of RISC-like TCG
ops (see @code{target-i386/translate.c}). Some optimizations can be
performed at this stage, including liveness analysis and trivial
constant expression evaluation. TCG ops are then implemented in the
host CPU back end, also known as TCG target (see
@code{tcg/i386/tcg-target.c}). For more information, please take a
look at @code{tcg/README}.
bellard's avatar
bellard committed

@node Condition code optimisations
bellard's avatar
bellard committed
392 393
@section Condition code optimisations

394 395 396
Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
is important for CPUs where every instruction sets the condition
codes. It tends to be less important on conventional RISC systems
397 398 399
where condition codes are only updated when explicitly requested. On
Sparc64, costly update of both 32 and 64 bit condition codes can be
avoided with lazy evaluation.
400 401 402 403 404 405 406 407

Instead of computing the condition codes after each x86 instruction,
QEMU just stores one operand (called @code{CC_SRC}), the result
(called @code{CC_DST}) and the type of operation (called
@code{CC_OP}). When the condition codes are needed, the condition
codes can be calculated using this information. In addition, an
optimized calculation can be performed for some instruction types like
conditional branches.
bellard's avatar
bellard committed

ths's avatar
ths committed
@code{CC_OP} is almost never explicitly set in the generated code
bellard's avatar
bellard committed
410 411
because it is known at translation time.

412 413
The lazy condition code evaluation is used on x86, m68k, cris and
Sparc. ARM uses a simplified variant for the N and Z flags.
bellard's avatar
bellard committed

@node CPU state optimisations
bellard's avatar
bellard committed
416 417
@section CPU state optimisations

418 419 420 421 422 423 424 425 426
The target CPUs have many internal states which change the way it
evaluates instructions. In order to achieve a good speed, the
translation phase considers that some state information of the virtual
CPU cannot change in it. The state is recorded in the Translation
Block (TB). If the state changes (e.g. privilege level), a new TB will
be generated and the previous TB won't be used anymore until the state
matches the state recorded in the previous TB. For example, if the SS,
DS and ES segments have a zero base, then the translator does not even
generate an addition for the segment base.
bellard's avatar
bellard committed
427 428 429

[The FPU stack pointer register is not handled that way yet].

@node Translation cache
bellard's avatar
bellard committed
431 432
@section Translation cache

A 32 MByte cache holds the most recently used translations. For
bellard's avatar
bellard committed
434 435 436 437 438
simplicity, it is completely flushed when it is full. A translation unit
contains just a single basic block (a block of x86 instructions
terminated by a jump or by a virtual CPU state change which the
translator cannot deduce statically).

@node Direct block chaining
bellard's avatar
bellard committed
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
@section Direct block chaining

After each translated basic block is executed, QEMU uses the simulated
Program Counter (PC) and other cpu state informations (such as the CS
segment base value) to find the next basic block.

In order to accelerate the most common cases where the new simulated PC
is known, QEMU can patch a basic block so that it jumps directly to the
next one.

The most portable code uses an indirect jump. An indirect jump makes
it easier to make the jump target modification atomic. On some host
architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
directly patched so that the block chaining has no overhead.

@node Self-modifying code and translated code invalidation
bellard's avatar
bellard committed
456 457 458 459 460 461 462
@section Self-modifying code and translated code invalidation

Self-modifying code is a special challenge in x86 emulation because no
instruction cache invalidation is signaled by the application when code
is modified.

When translated code is generated for a basic block, the corresponding
463 464 465 466
host page is write protected if it is not already read-only. Then, if
a write access is done to the page, Linux raises a SEGV signal. QEMU
then invalidates all the translated code in the page and enables write
accesses to the page.
bellard's avatar
bellard committed
467 468 469

Correct translated code invalidation is done efficiently by maintaining
a linked list of every translated block contained in a given page. Other
linked lists are also maintained to undo direct block chaining.
bellard's avatar
bellard committed

472 473 474 475 476
On RISC targets, correctly written software uses memory barriers and
cache flushes, so some of the protection above would not be
necessary. However, QEMU still requires that the generated code always
matches the target instructions in memory in order to handle
exceptions correctly.
bellard's avatar
bellard committed

@node Exception support
bellard's avatar
bellard committed
479 480 481
@section Exception support

longjmp() is used when an exception such as division by zero is
bellard's avatar
bellard committed
483 484

The host SIGSEGV and SIGBUS signal handlers are used to get invalid
485 486 487
memory accesses. The simulated program counter is found by
retranslating the corresponding basic block and by looking where the
host program counter was at the exception point.
bellard's avatar
bellard committed
488 489 490 491 492 493

The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
in some cases it is not computed because of condition code
optimisations. It is not a big concern because the emulated code can
still be restarted in any cases.

@node MMU emulation
bellard's avatar
bellard committed
495 496
@section MMU emulation

497 498 499 500
For system emulation QEMU supports a soft MMU. In that mode, the MMU
virtual to physical address translation is done at every memory
access. QEMU uses an address translation cache to speed up the
bellard's avatar
bellard committed
501 502 503

In order to avoid flushing the translated code each time the MMU
mappings change, QEMU uses a physically indexed translation cache. It
means that each basic block is indexed with its physical address.
bellard's avatar
bellard committed
505 506 507 508

When MMU mappings change, only the chaining of the basic blocks is
reset (i.e. a basic block can no longer jump directly to another one).

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
@node Device emulation
@section Device emulation

Systems emulated by QEMU are organized by boards. At initialization
phase, each board instantiates a number of CPUs, devices, RAM and
ROM. Each device in turn can assign I/O ports or memory areas (for
MMIO) to its handlers. When the emulation starts, an access to the
ports or MMIO memory areas assigned to the device causes the
corresponding handler to be called.

RAM and ROM are handled more optimally, only the offset to the host
memory needs to be added to the guest address.

The video RAM of VGA and other display cards is special: it can be
read or written directly like RAM, but write accesses cause the memory
to be marked with VGA_DIRTY flag as well.

QEMU supports some device classes like serial and parallel ports, USB,
drives and network devices, by providing APIs for easier connection to
the generic, higher level implementations. The API hides the
implementation details from the devices, like native device use or
advanced block device formats like QCOW.

Usually the devices implement a reset method and register support for
saving and loading of the device state. The devices can also use
timers, especially together with the use of bottom halves (BHs).

@node Hardware interrupts
bellard's avatar
bellard committed
537 538
@section Hardware interrupts

In order to be faster, QEMU does not check at every basic block if a
Stefan Weil's avatar
Stefan Weil committed
hardware interrupt is pending. Instead, the user must asynchronously
bellard's avatar
bellard committed
541 542 543 544 545 546
call a specific function to tell that an interrupt is pending. This
function resets the chaining of the currently executing basic
block. It ensures that the execution will return soon in the main loop
of the CPU emulator. Then the main loop can test if the interrupt is
pending and handle it.

@node User emulation specific details
bellard's avatar
bellard committed
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
@section User emulation specific details

@subsection Linux system call translation

QEMU includes a generic system call translator for Linux. It means that
the parameters of the system calls can be converted to fix the
endianness and 32/64 bit issues. The IOCTLs are converted with a generic
type description system (see @file{ioctls.h} and @file{thunk.c}).

QEMU supports host CPUs which have pages bigger than 4KB. It records all
the mappings the process does and try to emulated the @code{mmap()}
system calls in cases where the host @code{mmap()} call would fail
because of bad page alignment.

@subsection Linux signals

Normal and real-time signals are queued along with their information
(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
request is done to the virtual CPU. When it is interrupted, one queued
signal is handled by generating a stack frame in the virtual CPU as the
Linux kernel does. The @code{sigreturn()} system call is emulated to return
from the virtual signal handler.

Some signals (such as SIGALRM) directly come from the host. Other
Stefan Weil's avatar
Stefan Weil committed
signals are synthesized from the virtual CPU exceptions such as SIGFPE
bellard's avatar
bellard committed
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
when a division by zero is done (see @code{main.c:cpu_loop()}).

The blocked signal mask is still handled by the host Linux kernel so
that most signal system calls can be redirected directly to the host
Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
calls need to be fully emulated (see @file{signal.c}).

@subsection clone() system call and threads

The Linux clone() system call is usually used to create a thread. QEMU
uses the host clone() system call so that real host threads are created
for each emulated thread. One virtual CPU instance is created for each

The virtual x86 CPU atomic operations are emulated with a global lock so
that their semantic is preserved.

Note that currently there are still some locking issues in QEMU. In
particular, the translated cache flush is not protected yet against

@subsection Self-virtualization

QEMU was conceived so that ultimately it can emulate itself. Although
it is not very useful, it is an important test to show the power of the

Achieving self-virtualization is not easy because there may be address
601 602 603
space conflicts. QEMU user emulators solve this problem by being an
executable ELF shared object as the ld-linux.so ELF interpreter. That
way, it can be relocated at load time.
bellard's avatar
bellard committed

@node Bibliography
bellard's avatar
bellard committed
606 607 608 609
@section Bibliography

@table @asis

@item [1]
bellard's avatar
bellard committed
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio

@item [2]
@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
memory debugger for x86-GNU/Linux, by Julian Seward.

@item [3]
@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
by Kevin Lawton et al.

@item [4]
@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
x86 emulator on Alpha-Linux.

@item [5]
bellard's avatar
bellard committed
629 630 631 632 633 634 635 636
DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
Chernoff and Ray Hookway.

@item [6]
@url{http://www.willows.com/}, Windows API library emulation from
Willows Software.

@item [7]
bellard's avatar
bellard committed
638 639 640
The User-mode Linux Kernel.

@item [8]
bellard's avatar
bellard committed
642 643 644
The new Plex86 project.

@item [9]
bellard's avatar
bellard committed
646 647 648
The VMWare PC virtualizer.

@item [10]
bellard's avatar
bellard committed
650 651 652
The VirtualPC PC virtualizer.

@item [11]
bellard's avatar
bellard committed
654 655
The TwoOStwo PC virtualizer.

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
@item [12]
The VirtualBox PC virtualizer.

@item [13]
The Xen hypervisor.

@item [14]
Kernel Based Virtual Machine (KVM).

@item [15]
QEMU-SystemC, a hardware co-simulator.

bellard's avatar
bellard committed
672 673
@end table

@node Regression Tests
bellard's avatar
bellard committed
675 676 677
@chapter Regression Tests

In the directory @file{tests/}, various interesting testing programs
are available. They are used for regression testing.
bellard's avatar
bellard committed

680 681 682 683 684 685
* test-i386::
* linux-test::
@end menu

@node test-i386
bellard's avatar
bellard committed
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
@section @file{test-i386}

This program executes most of the 16 bit and 32 bit x86 instructions and
generates a text output. It can be compared with the output obtained with
a real CPU or another emulator. The target @code{make test} runs this
program and a @code{diff} on the generated output.

The Linux system call @code{modify_ldt()} is used to create x86 selectors
to test some 16 bit addressing and 32 bit with segmentation cases.

The Linux system call @code{vm86()} is used to test vm86 emulation.

Various exceptions are raised to test most of the x86 user space
exception reporting.

@node linux-test
bellard's avatar
bellard committed
702 703 704 705 706 707
@section @file{linux-test}

This program tests various Linux system calls. It is used to verify
that the system call parameters are correctly converted between target
and host CPUs.

708 709 710 711 712
@node Index
@chapter Index
@printindex cp