Newer
Older
/*
* Copyright (c) 2006 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <net/sock.h>
#include <linux/in.h>
#include <linux/list.h>
#include "rds.h"
/* When transmitting messages in rds_send_xmit, we need to emerge from
* time to time and briefly release the CPU. Otherwise the softlock watchdog
* will kick our shin.
* Also, it seems fairer to not let one busy connection stall all the
* others.
*
* send_batch_count is the number of times we'll loop in send_xmit. Setting
* it to 0 will restore the old behavior (where we looped until we had
* drained the queue).
*/
static int send_batch_count = 64;
module_param(send_batch_count, int, 0444);
MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
/*
* Reset the send state. Caller must hold c_send_lock when calling here.
*/
void rds_send_reset(struct rds_connection *conn)
{
struct rds_message *rm, *tmp;
unsigned long flags;
if (conn->c_xmit_rm) {
/* Tell the user the RDMA op is no longer mapped by the
* transport. This isn't entirely true (it's flushed out
* independently) but as the connection is down, there's
* no ongoing RDMA to/from that memory */
rds_message_unmapped(conn->c_xmit_rm);
rds_message_put(conn->c_xmit_rm);
conn->c_xmit_rm = NULL;
}
conn->c_xmit_sg = 0;
conn->c_xmit_hdr_off = 0;
conn->c_xmit_data_off = 0;
conn->c_xmit_rdma_sent = 0;
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
conn->c_map_queued = 0;
conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
/* Mark messages as retransmissions, and move them to the send q */
spin_lock_irqsave(&conn->c_lock, flags);
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
}
list_splice_init(&conn->c_retrans, &conn->c_send_queue);
spin_unlock_irqrestore(&conn->c_lock, flags);
}
/*
* We're making the concious trade-off here to only send one message
* down the connection at a time.
* Pro:
* - tx queueing is a simple fifo list
* - reassembly is optional and easily done by transports per conn
* - no per flow rx lookup at all, straight to the socket
* - less per-frag memory and wire overhead
* Con:
* - queued acks can be delayed behind large messages
* Depends:
* - small message latency is higher behind queued large messages
* - large message latency isn't starved by intervening small sends
*/
int rds_send_xmit(struct rds_connection *conn)
{
struct rds_message *rm;
unsigned long flags;
unsigned int tmp;
unsigned int send_quota = send_batch_count;
struct scatterlist *sg;
int ret = 0;
int was_empty = 0;
LIST_HEAD(to_be_dropped);
/*
* sendmsg calls here after having queued its message on the send
* queue. We only have one task feeding the connection at a time. If
* another thread is already feeding the queue then we back off. This
* avoids blocking the caller and trading per-connection data between
* caches per message.
*
* The sem holder will issue a retry if they notice that someone queued
* a message after they stopped walking the send queue but before they
* dropped the sem.
*/
if (!mutex_trylock(&conn->c_send_lock)) {
rds_stats_inc(s_send_sem_contention);
ret = -ENOMEM;
goto out;
}
if (conn->c_trans->xmit_prepare)
conn->c_trans->xmit_prepare(conn);
/*
* spin trying to push headers and data down the connection until
* the connection doens't make forward progress.
*/
while (--send_quota) {
/*
* See if need to send a congestion map update if we're
* between sending messages. The send_sem protects our sole
* use of c_map_offset and _bytes.
* Note this is used only by transports that define a special
* xmit_cong_map function. For all others, we create allocate
* a cong_map message and treat it just like any other send.
*/
if (conn->c_map_bytes) {
ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong,
if (ret <= 0)
break;
conn->c_map_offset += ret;
conn->c_map_bytes -= ret;
if (conn->c_map_bytes)
continue;
}
/* If we're done sending the current message, clear the
* offset and S/G temporaries.
*/
rm = conn->c_xmit_rm;
if (rm &&
conn->c_xmit_sg == rm->data.m_nents) {
conn->c_xmit_rm = NULL;
conn->c_xmit_sg = 0;
conn->c_xmit_hdr_off = 0;
conn->c_xmit_data_off = 0;
conn->c_xmit_rdma_sent = 0;
/* Release the reference to the previous message. */
rds_message_put(rm);
rm = NULL;
}
/* If we're asked to send a cong map update, do so.
*/
if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
if (conn->c_trans->xmit_cong_map) {
conn->c_map_offset = 0;
conn->c_map_bytes = sizeof(struct rds_header) +
RDS_CONG_MAP_BYTES;
continue;
}
rm = rds_cong_update_alloc(conn);
if (IS_ERR(rm)) {
ret = PTR_ERR(rm);
break;
}
conn->c_xmit_rm = rm;
}
/*
* Grab the next message from the send queue, if there is one.
*
* c_xmit_rm holds a ref while we're sending this message down
* the connction. We can use this ref while holding the
* send_sem.. rds_send_reset() is serialized with it.
*/
if (!rm) {
unsigned int len;
spin_lock_irqsave(&conn->c_lock, flags);
if (!list_empty(&conn->c_send_queue)) {
rm = list_entry(conn->c_send_queue.next,
struct rds_message,
m_conn_item);
rds_message_addref(rm);
/*
* Move the message from the send queue to the retransmit
* list right away.
*/
list_move_tail(&rm->m_conn_item, &conn->c_retrans);
}
spin_unlock_irqrestore(&conn->c_lock, flags);
if (!rm) {
was_empty = 1;
break;
}
/* Unfortunately, the way Infiniband deals with
* RDMA to a bad MR key is by moving the entire
* queue pair to error state. We cold possibly
* recover from that, but right now we drop the
* connection.
* Therefore, we never retransmit messages with RDMA ops.
*/
if (rm->rdma.m_rdma_op.r_active &&
test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
spin_lock_irqsave(&conn->c_lock, flags);
if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
list_move(&rm->m_conn_item, &to_be_dropped);
spin_unlock_irqrestore(&conn->c_lock, flags);
rds_message_put(rm);
continue;
}
/* Require an ACK every once in a while */
len = ntohl(rm->m_inc.i_hdr.h_len);
if (conn->c_unacked_packets == 0 ||
conn->c_unacked_bytes < len) {
__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
rds_stats_inc(s_send_ack_required);
} else {
conn->c_unacked_bytes -= len;
conn->c_unacked_packets--;
}
conn->c_xmit_rm = rm;
}
if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
if (ret)
break;
conn->c_xmit_atomic_sent = 1;
/* The transport owns the mapped memory for now.
* You can't unmap it while it's on the send queue */
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
}
/*
* Try and send an rdma message. Let's see if we can
* keep this simple and require that the transport either
* send the whole rdma or none of it.
*/
if (rm->rdma.m_rdma_op.r_active && !conn->c_xmit_rdma_sent) {
ret = conn->c_trans->xmit_rdma(conn, &rm->rdma.m_rdma_op);
/* rdmas need data sent, even if just the header */
rm->data.op_active = 1;
/* The transport owns the mapped memory for now.
* You can't unmap it while it's on the send queue */
set_bit(RDS_MSG_MAPPED, &rm->m_flags);
}
if (rm->data.op_active
&& (conn->c_xmit_hdr_off < sizeof(struct rds_header) ||
conn->c_xmit_sg < rm->data.m_nents)) {
ret = conn->c_trans->xmit(conn, rm,
conn->c_xmit_hdr_off,
conn->c_xmit_sg,
conn->c_xmit_data_off);
if (ret <= 0)
break;
if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
tmp = min_t(int, ret,
sizeof(struct rds_header) -
conn->c_xmit_hdr_off);
conn->c_xmit_hdr_off += tmp;
ret -= tmp;
}
sg = &rm->data.m_sg[conn->c_xmit_sg];
while (ret) {
tmp = min_t(int, ret, sg->length -
conn->c_xmit_data_off);
conn->c_xmit_data_off += tmp;
ret -= tmp;
if (conn->c_xmit_data_off == sg->length) {
conn->c_xmit_data_off = 0;
sg++;
conn->c_xmit_sg++;
BUG_ON(ret != 0 &&
conn->c_xmit_sg == rm->data.m_nents);
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
}
}
}
}
/* Nuke any messages we decided not to retransmit. */
if (!list_empty(&to_be_dropped))
rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
if (conn->c_trans->xmit_complete)
conn->c_trans->xmit_complete(conn);
/*
* We might be racing with another sender who queued a message but
* backed off on noticing that we held the c_send_lock. If we check
* for queued messages after dropping the sem then either we'll
* see the queued message or the queuer will get the sem. If we
* notice the queued message then we trigger an immediate retry.
*
* We need to be careful only to do this when we stopped processing
* the send queue because it was empty. It's the only way we
* stop processing the loop when the transport hasn't taken
* responsibility for forward progress.
*/
mutex_unlock(&conn->c_send_lock);
if (conn->c_map_bytes || (send_quota == 0 && !was_empty)) {
/* We exhausted the send quota, but there's work left to
* do. Return and (re-)schedule the send worker.
*/
ret = -EAGAIN;
}
if (ret == 0 && was_empty) {
/* A simple bit test would be way faster than taking the
* spin lock */
spin_lock_irqsave(&conn->c_lock, flags);
if (!list_empty(&conn->c_send_queue)) {
rds_stats_inc(s_send_sem_queue_raced);
ret = -EAGAIN;
}
spin_unlock_irqrestore(&conn->c_lock, flags);
}
out:
return ret;
}
static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
{
u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
assert_spin_locked(&rs->rs_lock);
BUG_ON(rs->rs_snd_bytes < len);
rs->rs_snd_bytes -= len;
if (rs->rs_snd_bytes == 0)
rds_stats_inc(s_send_queue_empty);
}
static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
is_acked_func is_acked)
{
if (is_acked)
return is_acked(rm, ack);
return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
}
/*
* Returns true if there are no messages on the send and retransmit queues
* which have a sequence number greater than or equal to the given sequence
* number.
*/
int rds_send_acked_before(struct rds_connection *conn, u64 seq)
{
struct rds_message *rm, *tmp;
int ret = 1;
spin_lock(&conn->c_lock);
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
ret = 0;
break;
}
list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
ret = 0;
break;
}
spin_unlock(&conn->c_lock);
return ret;
}
/*
* This is pretty similar to what happens below in the ACK
* handling code - except that we call here as soon as we get
* the IB send completion on the RDMA op and the accompanying
* message.
*/
void rds_rdma_send_complete(struct rds_message *rm, int status)
{
struct rds_sock *rs = NULL;
struct rds_rdma_op *ro;
struct rds_notifier *notifier;
spin_lock_irqsave(&rm->m_rs_lock, flags);
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
ro->r_active && ro->r_notify && ro->r_notifier) {
notifier = ro->r_notifier;
rs = rm->m_rs;
sock_hold(rds_rs_to_sk(rs));
notifier->n_status = status;
spin_lock(&rs->rs_lock);
list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
spin_unlock(&rs->rs_lock);
ro->r_notifier = NULL;
}
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
* Just like above, except looks at atomic op
*/
void rds_atomic_send_complete(struct rds_message *rm, int status)
{
struct rds_sock *rs = NULL;
struct rm_atomic_op *ao;
struct rds_notifier *notifier;
spin_lock(&rm->m_rs_lock);
ao = &rm->atomic;
if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
&& ao->op_active && ao->op_notify && ao->op_notifier) {
notifier = ao->op_notifier;
rs = rm->m_rs;
sock_hold(rds_rs_to_sk(rs));
notifier->n_status = status;
spin_lock(&rs->rs_lock);
list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
spin_unlock(&rs->rs_lock);
ao->op_notifier = NULL;
}
spin_unlock(&rm->m_rs_lock);
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
/*
* This is the same as rds_rdma_send_complete except we
* don't do any locking - we have all the ingredients (message,
* socket, socket lock) and can just move the notifier.
*/
static inline void
__rds_rdma_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
{
struct rds_rdma_op *ro;
ro = &rm->rdma.m_rdma_op;
if (ro->r_active && ro->r_notify && ro->r_notifier) {
ro->r_notifier->n_status = status;
list_add_tail(&ro->r_notifier->n_list, &rs->rs_notify_queue);
ro->r_notifier = NULL;
}
/* No need to wake the app - caller does this */
}
/*
* This is called from the IB send completion when we detect
* a RDMA operation that failed with remote access error.
* So speed is not an issue here.
*/
struct rds_message *rds_send_get_message(struct rds_connection *conn,
struct rds_rdma_op *op)
{
struct rds_message *rm, *tmp, *found = NULL;
unsigned long flags;
spin_lock_irqsave(&conn->c_lock, flags);
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
if (&rm->rdma.m_rdma_op == op) {
atomic_inc(&rm->m_refcount);
found = rm;
goto out;
}
}
list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
if (&rm->rdma.m_rdma_op == op) {
atomic_inc(&rm->m_refcount);
found = rm;
break;
}
}
out:
spin_unlock_irqrestore(&conn->c_lock, flags);
return found;
}
EXPORT_SYMBOL_GPL(rds_send_get_message);
/*
* This removes messages from the socket's list if they're on it. The list
* argument must be private to the caller, we must be able to modify it
* without locks. The messages must have a reference held for their
* position on the list. This function will drop that reference after
* removing the messages from the 'messages' list regardless of if it found
* the messages on the socket list or not.
*/
void rds_send_remove_from_sock(struct list_head *messages, int status)
{
struct rds_sock *rs = NULL;
struct rds_message *rm;
while (!list_empty(messages)) {
rm = list_entry(messages->next, struct rds_message,
m_conn_item);
list_del_init(&rm->m_conn_item);
/*
* If we see this flag cleared then we're *sure* that someone
* else beat us to removing it from the sock. If we race
* with their flag update we'll get the lock and then really
* see that the flag has been cleared.
*
* The message spinlock makes sure nobody clears rm->m_rs
* while we're messing with it. It does not prevent the
* message from being removed from the socket, though.
*/
spin_lock_irqsave(&rm->m_rs_lock, flags);
if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
goto unlock_and_drop;
if (rs != rm->m_rs) {
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
rs = rm->m_rs;
sock_hold(rds_rs_to_sk(rs));
}
struct rds_rdma_op *ro = &rm->rdma.m_rdma_op;
struct rds_notifier *notifier;
list_del_init(&rm->m_sock_item);
rds_send_sndbuf_remove(rs, rm);
if (ro->r_active && ro->r_notifier &&
(ro->r_notify || (ro->r_recverr && status))) {
notifier = ro->r_notifier;
list_add_tail(¬ifier->n_list,
&rs->rs_notify_queue);
if (!notifier->n_status)
notifier->n_status = status;
rm->rdma.m_rdma_op.r_notifier = NULL;
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
if (was_on_sock)
rds_message_put(rm);
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
}
if (rs) {
rds_wake_sk_sleep(rs);
sock_put(rds_rs_to_sk(rs));
}
}
/*
* Transports call here when they've determined that the receiver queued
* messages up to, and including, the given sequence number. Messages are
* moved to the retrans queue when rds_send_xmit picks them off the send
* queue. This means that in the TCP case, the message may not have been
* assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
* checks the RDS_MSG_HAS_ACK_SEQ bit.
*
* XXX It's not clear to me how this is safely serialized with socket
* destruction. Maybe it should bail if it sees SOCK_DEAD.
*/
void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
is_acked_func is_acked)
{
struct rds_message *rm, *tmp;
unsigned long flags;
LIST_HEAD(list);
spin_lock_irqsave(&conn->c_lock, flags);
list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
if (!rds_send_is_acked(rm, ack, is_acked))
break;
list_move(&rm->m_conn_item, &list);
clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
}
/* order flag updates with spin locks */
if (!list_empty(&list))
smp_mb__after_clear_bit();
spin_unlock_irqrestore(&conn->c_lock, flags);
/* now remove the messages from the sock list as needed */
rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
}
void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
{
struct rds_message *rm, *tmp;
struct rds_connection *conn;
LIST_HEAD(list);
/* get all the messages we're dropping under the rs lock */
spin_lock_irqsave(&rs->rs_lock, flags);
list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
dest->sin_port != rm->m_inc.i_hdr.h_dport))
continue;
list_move(&rm->m_sock_item, &list);
rds_send_sndbuf_remove(rs, rm);
clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
}
/* order flag updates with the rs lock */
if (list_empty(&list))
return;
/* Remove the messages from the conn */
spin_lock_irqsave(&conn->c_lock, flags);
* Maybe someone else beat us to removing rm from the conn.
* If we race with their flag update we'll get the lock and
* then really see that the flag has been cleared.
if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
spin_unlock_irqrestore(&conn->c_lock, flags);
list_del_init(&rm->m_conn_item);
spin_unlock_irqrestore(&conn->c_lock, flags);
/*
* Couldn't grab m_rs_lock in top loop (lock ordering),
* but we can now.
*/
spin_lock_irqsave(&rm->m_rs_lock, flags);
spin_lock(&rs->rs_lock);
__rds_rdma_send_complete(rs, rm, RDS_RDMA_CANCELED);
spin_unlock(&rs->rs_lock);
rm->m_rs = NULL;
spin_unlock_irqrestore(&rm->m_rs_lock, flags);
rds_message_put(rm);
}
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
while (!list_empty(&list)) {
rm = list_entry(list.next, struct rds_message, m_sock_item);
list_del_init(&rm->m_sock_item);
rds_message_wait(rm);
rds_message_put(rm);
}
}
/*
* we only want this to fire once so we use the callers 'queued'. It's
* possible that another thread can race with us and remove the
* message from the flow with RDS_CANCEL_SENT_TO.
*/
static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
struct rds_message *rm, __be16 sport,
__be16 dport, int *queued)
{
unsigned long flags;
u32 len;
if (*queued)
goto out;
len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
/* this is the only place which holds both the socket's rs_lock
* and the connection's c_lock */
spin_lock_irqsave(&rs->rs_lock, flags);
/*
* If there is a little space in sndbuf, we don't queue anything,
* and userspace gets -EAGAIN. But poll() indicates there's send
* room. This can lead to bad behavior (spinning) if snd_bytes isn't
* freed up by incoming acks. So we check the *old* value of
* rs_snd_bytes here to allow the last msg to exceed the buffer,
* and poll() now knows no more data can be sent.
*/
if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
rs->rs_snd_bytes += len;
/* let recv side know we are close to send space exhaustion.
* This is probably not the optimal way to do it, as this
* means we set the flag on *all* messages as soon as our
* throughput hits a certain threshold.
*/
if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
rds_message_addref(rm);
rm->m_rs = rs;
/* The code ordering is a little weird, but we're
trying to minimize the time we hold c_lock */
rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
rm->m_inc.i_conn = conn;
rds_message_addref(rm);
spin_lock(&conn->c_lock);
rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
spin_unlock(&conn->c_lock);
rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
rm, len, rs, rs->rs_snd_bytes,
(unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
*queued = 1;
}
spin_unlock_irqrestore(&rs->rs_lock, flags);
out:
return *queued;
}
/*
* rds_message is getting to be quite complicated, and we'd like to allocate
* it all in one go. This figures out how big it needs to be up front.
*/
static int rds_rm_size(struct msghdr *msg, int data_len)
{
int retval;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_RDS)
continue;
switch (cmsg->cmsg_type) {
case RDS_CMSG_RDMA_ARGS:
retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
if (retval < 0)
return retval;
size += retval;
break;
case RDS_CMSG_RDMA_DEST:
case RDS_CMSG_RDMA_MAP:
/* these are valid but do no add any size */
break;
case RDS_CMSG_ATOMIC_CSWP:
case RDS_CMSG_ATOMIC_FADD:
size += sizeof(struct scatterlist);
break;
default:
return -EINVAL;
}
}
size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
struct msghdr *msg, int *allocated_mr)
{
struct cmsghdr *cmsg;
int ret = 0;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_RDS)
continue;
/* As a side effect, RDMA_DEST and RDMA_MAP will set
* rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
*/
switch (cmsg->cmsg_type) {
case RDS_CMSG_RDMA_ARGS:
ret = rds_cmsg_rdma_args(rs, rm, cmsg);
break;
case RDS_CMSG_RDMA_DEST:
ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
break;
case RDS_CMSG_RDMA_MAP:
ret = rds_cmsg_rdma_map(rs, rm, cmsg);
if (!ret)
*allocated_mr = 1;
break;
case RDS_CMSG_ATOMIC_CSWP:
case RDS_CMSG_ATOMIC_FADD:
ret = rds_cmsg_atomic(rs, rm, cmsg);
break;
default:
return -EINVAL;
}
if (ret)
break;
}
return ret;
}
int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
size_t payload_len)
{
struct sock *sk = sock->sk;
struct rds_sock *rs = rds_sk_to_rs(sk);
struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
__be32 daddr;
__be16 dport;
struct rds_message *rm = NULL;
struct rds_connection *conn;
int ret = 0;
int queued = 0, allocated_mr = 0;
int nonblock = msg->msg_flags & MSG_DONTWAIT;
long timeo = sock_sndtimeo(sk, nonblock);
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/* Mirror Linux UDP mirror of BSD error message compatibility */
/* XXX: Perhaps MSG_MORE someday */
if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
ret = -EOPNOTSUPP;
goto out;
}
if (msg->msg_namelen) {
/* XXX fail non-unicast destination IPs? */
if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
ret = -EINVAL;
goto out;
}
daddr = usin->sin_addr.s_addr;
dport = usin->sin_port;
} else {
/* We only care about consistency with ->connect() */
lock_sock(sk);
daddr = rs->rs_conn_addr;
dport = rs->rs_conn_port;
release_sock(sk);
}
/* racing with another thread binding seems ok here */
if (daddr == 0 || rs->rs_bound_addr == 0) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out;
}
/* size of rm including all sgs */
ret = rds_rm_size(msg, payload_len);
if (ret < 0)
goto out;
rm = rds_message_alloc(ret, GFP_KERNEL);
if (!rm) {
ret = -ENOMEM;
rm->data.m_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
/* XXX fix this to not allocate memory */
ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
if (ret)
goto out;
rm->m_daddr = daddr;
/* rds_conn_create has a spinlock that runs with IRQ off.
* Caching the conn in the socket helps a lot. */
if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
conn = rs->rs_conn;
else {
conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
rs->rs_transport,
sock->sk->sk_allocation);
if (IS_ERR(conn)) {
ret = PTR_ERR(conn);
goto out;
}
rs->rs_conn = conn;
}
/* Parse any control messages the user may have included. */
ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
if (ret)
goto out;
if ((rm->m_rdma_cookie || rm->rdma.m_rdma_op.r_active) &&
if (printk_ratelimit())
printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
&rm->rdma.m_rdma_op, conn->c_trans->xmit_rdma);
ret = -EOPNOTSUPP;
goto out;
}
if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
if (printk_ratelimit())