Skip to content
Snippets Groups Projects
ichspi.c 42.7 KiB
Newer Older
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
 * Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
 * Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
 * Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
 * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
 * Copyright (C) 2011 Stefan Tauner
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
 */

#if defined(__i386__) || defined(__x86_64__)

#include <string.h>
#include "flash.h"
#include "programmer.h"
#include "spi.h"
#include "ich_descriptors.h"
/* ICH9 controller register definition */
#define ICH9_REG_HSFS		0x04	/* 16 Bits Hardware Sequencing Flash Status */
#define HSFS_FDONE_OFF		0	/* 0: Flash Cycle Done */
#define HSFS_FDONE		(0x1 << HSFS_FDONE_OFF)
#define HSFS_FCERR_OFF		1	/* 1: Flash Cycle Error */
#define HSFS_FCERR		(0x1 << HSFS_FCERR_OFF)
#define HSFS_AEL_OFF		2	/* 2: Access Error Log */
#define HSFS_AEL		(0x1 << HSFS_AEL_OFF)
#define HSFS_BERASE_OFF		3	/* 3-4: Block/Sector Erase Size */
#define HSFS_BERASE		(0x3 << HSFS_BERASE_OFF)
#define HSFS_SCIP_OFF		5	/* 5: SPI Cycle In Progress */
#define HSFS_SCIP		(0x1 << HSFS_SCIP_OFF)
					/* 6-12: reserved */
#define HSFS_FDOPSS_OFF		13	/* 13: Flash Descriptor Override Pin-Strap Status */
#define HSFS_FDOPSS		(0x1 << HSFS_FDOPSS_OFF)
#define HSFS_FDV_OFF		14	/* 14: Flash Descriptor Valid */
#define HSFS_FDV		(0x1 << HSFS_FDV_OFF)
#define HSFS_FLOCKDN_OFF	15	/* 15: Flash Configuration Lock-Down */
#define HSFS_FLOCKDN		(0x1 << HSFS_FLOCKDN_OFF)

#define ICH9_REG_HSFC		0x06	/* 16 Bits Hardware Sequencing Flash Control */
#define HSFC_FGO_OFF		0	/* 0: Flash Cycle Go */
#define HSFC_FGO		(0x1 << HSFC_FGO_OFF)
#define HSFC_FCYCLE_OFF		1	/* 1-2: FLASH Cycle */
#define HSFC_FCYCLE		(0x3 << HSFC_FCYCLE_OFF)
					/* 3-7: reserved */
#define HSFC_FDBC_OFF		8	/* 8-13: Flash Data Byte Count */
#define HSFC_FDBC		(0x3f << HSFC_FDBC_OFF)
					/* 14: reserved */
#define HSFC_SME_OFF		15	/* 15: SPI SMI# Enable */
#define HSFC_SME		(0x1 << HSFC_SME_OFF)

#define ICH9_REG_FADDR		0x08	/* 32 Bits */
#define ICH9_REG_FDATA0		0x10	/* 64 Bytes */
#define ICH9_REG_FRAP		0x50	/* 32 Bytes Flash Region Access Permissions */
#define ICH9_REG_FREG0		0x54	/* 32 Bytes Flash Region 0 */

#define ICH9_REG_PR0		0x74	/* 32 Bytes Protected Range 0 */
#define ICH9_REG_PR1		0x78	/* 32 Bytes Protected Range 1 */
#define ICH9_REG_PR2		0x7c	/* 32 Bytes Protected Range 2 */
#define ICH9_REG_PR3		0x80	/* 32 Bytes Protected Range 3 */
#define ICH9_REG_PR4		0x84	/* 32 Bytes Protected Range 4 */

#define ICH9_REG_SSFS		0x90	/* 08 Bits */
#define SSFS_SCIP_OFF		0	/* SPI Cycle In Progress */
#define SSFS_SCIP		(0x1 << SSFS_SCIP_OFF)
#define SSFS_FDONE_OFF		2	/* Cycle Done Status */
#define SSFS_FDONE		(0x1 << SSFS_FDONE_OFF)
#define SSFS_FCERR_OFF		3	/* Flash Cycle Error */
#define SSFS_FCERR		(0x1 << SSFS_FCERR_OFF)
#define SSFS_AEL_OFF		4	/* Access Error Log */
#define SSFS_AEL		(0x1 << SSFS_AEL_OFF)
/* The following bits are reserved in SSFS: 1,5-7. */
#define SSFS_RESERVED_MASK	0x000000e2
#define ICH9_REG_SSFC		0x91	/* 24 Bits */
/* We combine SSFS and SSFC to one 32-bit word,
 * therefore SSFC bits are off by 8. */
						/* 0: reserved */
#define SSFC_SCGO_OFF		(1 + 8)		/* 1: SPI Cycle Go */
#define SSFC_SCGO		(0x1 << SSFC_SCGO_OFF)
#define SSFC_ACS_OFF		(2 + 8)		/* 2: Atomic Cycle Sequence */
#define SSFC_ACS		(0x1 << SSFC_ACS_OFF)
#define SSFC_SPOP_OFF		(3 + 8)		/* 3: Sequence Prefix Opcode Pointer */
#define SSFC_SPOP		(0x1 << SSFC_SPOP_OFF)
#define SSFC_COP_OFF		(4 + 8)		/* 4-6: Cycle Opcode Pointer */
#define SSFC_COP		(0x7 << SSFC_COP_OFF)
						/* 7: reserved */
#define SSFC_DBC_OFF		(8 + 8)		/* 8-13: Data Byte Count */
#define SSFC_DBC		(0x3f << SSFC_DBC_OFF)
#define SSFC_DS_OFF		(14 + 8)	/* 14: Data Cycle */
#define SSFC_DS			(0x1 << SSFC_DS_OFF)
#define SSFC_SME_OFF		(15 + 8)	/* 15: SPI SMI# Enable */
#define SSFC_SME		(0x1 << SSFC_SME_OFF)
#define SSFC_SCF_OFF		(16 + 8)	/* 16-18: SPI Cycle Frequency */
#define SSFC_SCF		(0x7 << SSFC_SCF_OFF)
#define SSFC_SCF_20MHZ		0x00000000
#define SSFC_SCF_33MHZ		0x01000000
						/* 19-23: reserved */
#define SSFC_RESERVED_MASK	0xf8008100
#define ICH9_REG_PREOP		0x94	/* 16 Bits */
#define ICH9_REG_OPTYPE		0x96	/* 16 Bits */
#define ICH9_REG_OPMENU		0x98	/* 64 Bits */
#define ICH9_REG_BBAR		0xA0	/* 32 Bits BIOS Base Address Configuration */
#define BBAR_MASK	0x00ffff00		/* 8-23: Bottom of System Flash */

#define ICH8_REG_VSCC		0xC1	/* 32 Bits Vendor Specific Component Capabilities */
#define ICH9_REG_LVSCC		0xC4	/* 32 Bits Host Lower Vendor Specific Component Capabilities */
#define ICH9_REG_UVSCC		0xC8	/* 32 Bits Host Upper Vendor Specific Component Capabilities */
/* The individual fields of the VSCC registers are defined in the file
 * ich_descriptors.h. The reason is that the same layout is also used in the
 * flash descriptor to define the properties of the different flash chips
 * supported. The BIOS (or the ME?) is responsible to populate the ICH registers
 * with the information from the descriptor on startup depending on the actual
 * chip(s) detected. */

#define ICH9_REG_FPB		0xD0	/* 32 Bits Flash Partition Boundary */
#define FPB_FPBA_OFF		0	/* 0-12: Block/Sector Erase Size */
#define FPB_FPBA			(0x1FFF << FPB_FPBA_OFF)

// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS		0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS	1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS	2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS	3
// ICH7 registers
#define ICH7_REG_SPIS		0x00	/* 16 Bits */
#define SPIS_SCIP		0x0001
#define SPIS_GRANT		0x0002
#define SPIS_CDS		0x0004
#define SPIS_FCERR		0x0008
#define SPIS_RESERVED_MASK	0x7ff0
/* VIA SPI is compatible with ICH7, but maxdata
   to transfer is 16 bytes.

   DATA byte count on ICH7 is 8:13, on VIA 8:11

   bit 12 is port select CS0 CS1
   bit 13 is FAST READ enable
   bit 7  is used with fast read and one shot controls CS de-assert?
*/

#define ICH7_REG_SPIC		0x02	/* 16 Bits */
#define SPIC_SCGO		0x0002
#define SPIC_ACS		0x0004
#define SPIC_SPOP		0x0008
#define SPIC_DS			0x4000
#define ICH7_REG_SPIA		0x04	/* 32 Bits */
#define ICH7_REG_SPID0		0x08	/* 64 Bytes */
#define ICH7_REG_PREOP		0x54	/* 16 Bits */
#define ICH7_REG_OPTYPE		0x56	/* 16 Bits */
#define ICH7_REG_OPMENU		0x58	/* 64 Bits */
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
static int ichspi_lock = 0;
static void *ich_spibar = NULL;
typedef struct _OPCODE {
	uint8_t opcode;		//This commands spi opcode
	uint8_t spi_type;	//This commands spi type
	uint8_t atomic;		//Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;

/* Suggested opcode definition:
 * Preop 1: Write Enable
 * Preop 2: Write Status register enable
 *
 * OP 0: Write address
 * OP 1: Read Address
 * OP 2: ERASE block
 * OP 3: Read Status register
 * OP 4: Read ID
 * OP 5: Write Status register
 * OP 6: chip private (read JEDEC id)
 * OP 7: Chip erase
 */
typedef struct _OPCODES {
	uint8_t preop[2];
	OPCODE opcode[8];
} OPCODES;

static OPCODES *curopcodes = NULL;

/* HW access functions */
static uint32_t REGREAD32(int X)
static uint16_t REGREAD16(int X)
static uint16_t REGREAD8(int X)
{
	return mmio_readb(ich_spibar + X);
}

#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
#define REGWRITE8(off, val)  mmio_writeb(val, ich_spibar+(off))

/* Common SPI functions */
static int find_opcode(OPCODES *op, uint8_t opcode);
static int find_preop(OPCODES *op, uint8_t preop);
static int generate_opcodes(OPCODES * op);
static int program_opcodes(OPCODES *op, int enable_undo);
static int run_opcode(OPCODE op, uint32_t offset,
		      uint8_t datalength, uint8_t * data);
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
	uint8_t preop;
	uint8_t opcode;
};

/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
const struct preop_opcode_pair pops[] = {
	{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
	{JEDEC_WREN, JEDEC_SE}, /* sector erase */
	{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
	{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
	{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
	{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
	 /* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
	{JEDEC_WREN, JEDEC_WRSR},
	{JEDEC_EWSR, JEDEC_WRSR},
	{0,}
};

/* Reasonable default configuration. Needs ad-hoc modifications if we
 * encounter unlisted opcodes. Fun.
 */
	{
	 JEDEC_WREN,
	 {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Write Byte
	 {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Data
	 {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Erase Sector
	 {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read Device Status Reg
	 {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Electronic Manufacturer Signature
	 {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Write Status Register
	 {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read JDEC ID
	 {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Bulk erase
	}
/* List of opcodes with their corresponding spi_type
 * It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
 * is needed which is currently not in the chipset OPCODE table
 */
static OPCODE POSSIBLE_OPCODES[] = {
	 {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Write Byte
	 {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Data
	 {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Erase Sector
	 {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read Device Status Reg
	 {JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0},	// Read Electronic Manufacturer Signature
	 {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Write Status Register
	 {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0},	// Read JDEC ID
	 {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Bulk erase
	 {JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Sector erase
	 {JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0},	// Block erase
	 {JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0},	// Auto Address Increment
};

/* pretty printing functions */
static void prettyprint_opcodes(OPCODES *ops)
	const char *t;
	const char *a;
	static const char *const spi_type[4] = {
		"read  w/o addr",
		"write w/o addr",
		"read  w/  addr",
		"write w/  addr"
	};
	static const char *const atomic_type[3] = {
		"none",
		" 0  ",
		" 1  "
	};

	if (ops == NULL)
		return;

	msg_pdbg2("        OP        Type      Pre-OP\n");
	for (i = 0; i < 8; i++) {
		oc = ops->opcode[i];
		t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
		a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
		msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
	msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
		 ops->preop[1]);
}

#define pprint_reg(reg, bit, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & reg##_##bit)>>reg##_##bit##_OFF)

static void prettyprint_ich9_reg_hsfs(uint16_t reg_val)
{
	msg_pdbg("HSFS: ");
	pprint_reg(HSFS, FDONE, reg_val, ", ");
	pprint_reg(HSFS, FCERR, reg_val, ", ");
	pprint_reg(HSFS, AEL, reg_val, ", ");
	pprint_reg(HSFS, BERASE, reg_val, ", ");
	pprint_reg(HSFS, SCIP, reg_val, ", ");
	pprint_reg(HSFS, FDOPSS, reg_val, ", ");
	pprint_reg(HSFS, FDV, reg_val, ", ");
	pprint_reg(HSFS, FLOCKDN, reg_val, "\n");
}

static void prettyprint_ich9_reg_hsfc(uint16_t reg_val)
{
	msg_pdbg("HSFC: ");
	pprint_reg(HSFC, FGO, reg_val, ", ");
	pprint_reg(HSFC, FCYCLE, reg_val, ", ");
	pprint_reg(HSFC, FDBC, reg_val, ", ");
	pprint_reg(HSFC, SME, reg_val, "\n");
}

static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
{
	msg_pdbg("SSFS: ");
	pprint_reg(SSFS, SCIP, reg_val, ", ");
	pprint_reg(SSFS, FDONE, reg_val, ", ");
	pprint_reg(SSFS, FCERR, reg_val, ", ");
	pprint_reg(SSFS, AEL, reg_val, "\n");
}

static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
{
	msg_pdbg("SSFC: ");
	pprint_reg(SSFC, SCGO, reg_val, ", ");
	pprint_reg(SSFC, ACS, reg_val, ", ");
	pprint_reg(SSFC, SPOP, reg_val, ", ");
	pprint_reg(SSFC, COP, reg_val, ", ");
	pprint_reg(SSFC, DBC, reg_val, ", ");
	pprint_reg(SSFC, SME, reg_val, ", ");
	pprint_reg(SSFC, SCF, reg_val, "\n");
}

static uint8_t lookup_spi_type(uint8_t opcode)
{
	int a;

	for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
		if (POSSIBLE_OPCODES[a].opcode == opcode)
			return POSSIBLE_OPCODES[a].spi_type;
	}

	return 0xFF;
}

static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
{
	uint8_t spi_type;

	spi_type = lookup_spi_type(opcode);
	if (spi_type > 3) {
		/* Try to guess spi type from read/write sizes.
		 * The following valid writecnt/readcnt combinations exist:
		 * writecnt  = 4, readcnt >= 0
		 * writecnt  = 1, readcnt >= 0
		 * writecnt >= 4, readcnt  = 0
		 * writecnt >= 1, readcnt  = 0
		 * writecnt >= 1 is guaranteed for all commands.
		 */
		if (readcnt == 0)
			/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
			 * or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
			 * bytes are actual the address, they go to the bus anyhow
			 */
			spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
		else if (writecnt == 1) // and readcnt is > 0
			spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
		else if (writecnt == 4) // and readcnt is > 0
			spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
		// else we have an invalid case, will be handled below
	}
	if (spi_type <= 3) {
		int oppos=2;	// use original JEDEC_BE_D8 offset
		curopcodes->opcode[oppos].opcode = opcode;
		curopcodes->opcode[oppos].spi_type = spi_type;
		program_opcodes(curopcodes, 0);
		oppos = find_opcode(curopcodes, opcode);
		msg_pdbg ("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
		return oppos;
	}
	return -1;
}

static int find_opcode(OPCODES *op, uint8_t opcode)
{
	int a;

	for (a = 0; a < 8; a++) {
		if (op->opcode[a].opcode == opcode)
			return a;
	}

	return -1;
}

static int find_preop(OPCODES *op, uint8_t preop)
/* Create a struct OPCODES based on what we find in the locked down chipset. */
static int generate_opcodes(OPCODES * op)
		msg_perr("\n%s: null OPCODES pointer!\n", __func__);
	switch (spi_programmer->type) {
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_VIA:
		preop = REGREAD16(ICH7_REG_PREOP);
		optype = REGREAD16(ICH7_REG_OPTYPE);
		opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
		opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
		break;
	case SPI_CONTROLLER_ICH9:
		preop = REGREAD16(ICH9_REG_PREOP);
		optype = REGREAD16(ICH9_REG_OPTYPE);
		opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
		opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
		break;
	default:
		msg_perr("%s: unsupported chipset\n", __func__);
		return -1;
	}

	op->preop[0] = (uint8_t) preop;
	op->preop[1] = (uint8_t) (preop >> 8);

	for (a = 0; a < 8; a++) {
		op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
		optype >>= 2;
	}

	for (a = 0; a < 4; a++) {
		op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
		opmenu[0] >>= 8;
	}

	for (a = 4; a < 8; a++) {
		op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
		opmenu[1] >>= 8;
	}

	/* No preopcodes used by default. */
	for (a = 0; a < 8; a++)
static int program_opcodes(OPCODES *op, int enable_undo)

	/* Program Prefix Opcodes */
	/* 0:7 Prefix Opcode 1 */
	/* 8:16 Prefix Opcode 2 */
	/* Program Opcode Types 0 - 7 */
	for (a = 0; a < 8; a++) {
		optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
	/* Program Allowable Opcodes 0 - 3 */
	for (a = 0; a < 4; a++) {
		opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
	/*Program Allowable Opcodes 4 - 7 */
	for (a = 4; a < 8; a++) {
		opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
	msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
	switch (spi_programmer->type) {
	case SPI_CONTROLLER_ICH7:
	case SPI_CONTROLLER_VIA:
		/* Register undo only for enable_undo=1, i.e. first call. */
		if (enable_undo) {
			rmmio_valw(ich_spibar + ICH7_REG_PREOP);
			rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
			rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
			rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
		}
		mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
		mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
		mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
		mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
	case SPI_CONTROLLER_ICH9:
		/* Register undo only for enable_undo=1, i.e. first call. */
		if (enable_undo) {
			rmmio_valw(ich_spibar + ICH9_REG_PREOP);
			rmmio_valw(ich_spibar + ICH9_REG_OPTYPE);
			rmmio_vall(ich_spibar + ICH9_REG_OPMENU);
			rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4);
		}
		mmio_writew(preop, ich_spibar + ICH9_REG_PREOP);
		mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE);
		mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU);
		mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4);
		msg_perr("%s: unsupported chipset\n", __func__);
/*
 * Try to set BBAR (BIOS Base Address Register), but read back the value in case
 * it didn't stick.
 */
static void ich_set_bbar(int ich_generation, uint32_t min_addr)
	int bbar_off;
	switch (ich_generation) {
	case 7:
		bbar_off = 0x50;
	case 8:
		msg_perr("BBAR offset is unknown on ICH8!\n");
		return;
	default:		/* Future version might behave the same */
		bbar_off = ICH9_REG_BBAR;
	}
	
	ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
	if (ichspi_bbar) {
		msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n",
			 ichspi_bbar);
	min_addr &= BBAR_MASK;
	ichspi_bbar |= min_addr;
	rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
	ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;

	/* We don't have any option except complaining. And if the write
	 * failed, the restore will fail as well, so no problem there.
	 */
	if (ichspi_bbar != min_addr)
		msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n",
			 min_addr, ichspi_bbar);
/* Read len bytes from the fdata/spid register into the data array.
 *
 * Note that using len > spi_programmer->max_data_read will return garbage or
 * may even crash.
 */
 static void ich_read_data(uint8_t *data, int len, int reg0_off)
 {
	int i;
	uint32_t temp32 = 0;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = REGREAD32(reg0_off + i);

		data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
	}
}

/* Fill len bytes from the data array into the fdata/spid registers.
 *
 * Note that using len > spi_programmer->max_data_write will trash the registers
 * following the data registers.
 */
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
{
	uint32_t temp32 = 0;
	int i;

	if (len <= 0)
		return;

	for (i = 0; i < len; i++) {
		if ((i % 4) == 0)
			temp32 = 0;

		temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);

		if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
			REGWRITE32(reg0_off + (i - (i % 4)), temp32);
	}
	i--;
	if ((i % 4) != 3) /* Write remaining data to regs. */
		REGWRITE32(reg0_off + (i - (i % 4)), temp32);
}

/* This function generates OPCODES from or programs OPCODES to ICH according to
 * the chipset's SPI configuration lock.
 * It should be called before ICH sends any spi command.
static int ich_init_opcodes(void)
{
	int rc = 0;
	OPCODES *curopcodes_done;

	if (curopcodes)
		return 0;

	if (ichspi_lock) {
		msg_pdbg("Reading OPCODES... ");
		rc = generate_opcodes(curopcodes_done);
		msg_pdbg("Programming OPCODES... ");
		rc = program_opcodes(curopcodes_done, 1);
		prettyprint_opcodes(curopcodes);
static int ich7_run_opcode(OPCODE op, uint32_t offset,
			   uint8_t datalength, uint8_t * data, int maxdata)
{
	int write_cmd = 0;
	int timeout;
	uint16_t temp16;

	/* Is it a write command? */
	if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
	    || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
		write_cmd = 1;
	}

	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
		programmer_delay(10);
	}
	if (!timeout) {
		msg_perr("Error: SCIP never cleared!\n");
		return 1;
	}

	/* Program offset in flash into SPIA while preserving reserved bits. */
	temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
	REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
	/* Program data into SPID0 to N */
	if (write_cmd && (datalength != 0))
		ich_fill_data(data, datalength, ICH7_REG_SPID0);

	/* Assemble SPIS */
	temp16 = REGREAD16(ICH7_REG_SPIS);
	/* keep reserved bits */
	temp16 &= SPIS_RESERVED_MASK;
	/* clear error status registers */
	temp16 |= (SPIS_CDS | SPIS_FCERR);
	REGWRITE16(ICH7_REG_SPIS, temp16);

	/* Assemble SPIC */
	temp16 = 0;

	if (datalength != 0) {
		temp16 |= SPIC_DS;
		temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
	}

	/* Select opcode */
	opmenu = REGREAD32(ICH7_REG_OPMENU);
	opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;

	for (opcode_index = 0; opcode_index < 8; opcode_index++) {
		if ((opmenu & 0xff) == op.opcode) {
		msg_pdbg("Opcode %x not found.\n", op.opcode);
		return 1;
	}
	temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	/* Handle Atomic. Atomic commands include three steps:
	    - sending the preop (mainly EWSR or WREN)
	    - sending the main command
	    - waiting for the busy bit (WIP) to be cleared
	   This means the timeout must be sufficient for chip erase
	   of slow high-capacity chips.
	switch (op.atomic) {
	case 2:
		/* Select second preop. */
		temp16 |= SPIC_SPOP;
		/* And fall through. */
	case 1:
		/* Atomic command (preop+op) */
		temp16 |= SPIC_ACS;
		timeout = 100 * 1000 * 60;	/* 60 seconds */
	}

	/* Start */
	temp16 |= SPIC_SCGO;

	/* write it */
	REGWRITE16(ICH7_REG_SPIC, temp16);

	/* Wait for Cycle Done Status or Flash Cycle Error. */
	while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
	       --timeout) {
		programmer_delay(10);
	}
	if (!timeout) {
		msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n",
			 REGREAD16(ICH7_REG_SPIS));
		return 1;
	/* FIXME: make sure we do not needlessly cause transaction errors. */
	temp16 = REGREAD16(ICH7_REG_SPIS);
	if (temp16 & SPIS_FCERR) {
		msg_perr("Transaction error!\n");
		/* keep reserved bits */
		temp16 &= SPIS_RESERVED_MASK;
		REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
	if ((!write_cmd) && (datalength != 0))
		ich_read_data(data, datalength, ICH7_REG_SPID0);
static int ich9_run_opcode(OPCODE op, uint32_t offset,
			   uint8_t datalength, uint8_t * data)
{
	int write_cmd = 0;
	uint32_t temp32;

	/* Is it a write command? */
	if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
	    || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
		write_cmd = 1;
	}

	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) {
		programmer_delay(10);
	}
	if (!timeout) {
		msg_perr("Error: SCIP never cleared!\n");
		return 1;
	}

	/* Program offset in flash into FADDR while preserve the reserved bits
	 * and clearing the 25. address bit which is only useable in hwseq. */
	temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
	REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);

	/* Program data into FDATA0 to N */
	if (write_cmd && (datalength != 0))
		ich_fill_data(data, datalength, ICH9_REG_FDATA0);

	/* Assemble SSFS + SSFC */
	temp32 = REGREAD32(ICH9_REG_SSFS);
	/* Keep reserved bits only */
	temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
	/* Clear cycle done and cycle error status registers */
	temp32 |= (SSFS_FDONE | SSFS_FCERR);
	REGWRITE32(ICH9_REG_SSFS, temp32);

	temp32 |= SSFC_SCF_20MHZ;

	/* Set data byte count (DBC) and data cycle bit (DS) */
	if (datalength != 0) {
		uint32_t datatemp;
		temp32 |= SSFC_DS;
		datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) &
			    SSFC_DBC);
		temp32 |= datatemp;
	}

	/* Select opcode */
	opmenu = REGREAD32(ICH9_REG_OPMENU);
	opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;

	for (opcode_index = 0; opcode_index < 8; opcode_index++) {
		if ((opmenu & 0xff) == op.opcode) {
		msg_pdbg("Opcode %x not found.\n", op.opcode);
		return 1;
	}
	temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
	timeout = 100 * 60;	/* 60 ms are 9.6 million cycles at 16 MHz. */
	/* Handle Atomic. Atomic commands include three steps:
	    - sending the preop (mainly EWSR or WREN)
	    - sending the main command
	    - waiting for the busy bit (WIP) to be cleared
	   This means the timeout must be sufficient for chip erase
	   of slow high-capacity chips.
	switch (op.atomic) {
	case 2:
		/* Select second preop. */
		temp32 |= SSFC_SPOP;
		/* And fall through. */
	case 1:
		/* Atomic command (preop+op) */
		temp32 |= SSFC_ACS;
		timeout = 100 * 1000 * 60;	/* 60 seconds */
	}

	/* Start */
	temp32 |= SSFC_SCGO;

	/* write it */
	REGWRITE32(ICH9_REG_SSFS, temp32);
	/* Wait for Cycle Done Status or Flash Cycle Error. */
	while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
		programmer_delay(10);
		msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n",
			 REGREAD32(ICH9_REG_SSFS));
		return 1;
	/* FIXME make sure we do not needlessly cause transaction errors. */
	temp32 = REGREAD32(ICH9_REG_SSFS);
	if (temp32 & SSFS_FCERR) {
		msg_perr("Transaction error!\n");
		prettyprint_ich9_reg_ssfs(temp32);
		prettyprint_ich9_reg_ssfc(temp32);
		/* keep reserved bits */
		temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
		/* Clear the transaction error. */
		REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR);
	if ((!write_cmd) && (datalength != 0))
		ich_read_data(data, datalength, ICH9_REG_FDATA0);
static int run_opcode(OPCODE op, uint32_t offset,
		      uint8_t datalength, uint8_t * data)
{
	/* max_data_read == max_data_write for all Intel/VIA SPI masters */
	uint8_t maxlength = spi_programmer->max_data_read;

	if (spi_programmer->type == SPI_CONTROLLER_NONE) {
		msg_perr("%s: unsupported chipset\n", __func__);
		return -1;
	}

	if (datalength > maxlength) {
		msg_perr("%s: Internal command size error for "
			"opcode 0x%02x, got datalength=%i, want <=%i\n",
			__func__, op.opcode, datalength, maxlength);
		return SPI_INVALID_LENGTH;
	}

	switch (spi_programmer->type) {
	case SPI_CONTROLLER_VIA:
	case SPI_CONTROLLER_ICH7:
		return ich7_run_opcode(op, offset, datalength, data, maxlength);
	case SPI_CONTROLLER_ICH9:
		return ich9_run_opcode(op, offset, datalength, data);
		/* If we ever get here, something really weird happened */
		return -1;
static int ich_spi_send_command(unsigned int writecnt, unsigned int readcnt,
		    const unsigned char *writearr, unsigned char *readarr)
	int opcode_index = -1;
	const unsigned char cmd = *writearr;
	OPCODE *opcode;
	uint32_t addr = 0;
	uint8_t *data;
	int count;

	/* find cmd in opcodes-table */
	opcode_index = find_opcode(curopcodes, cmd);
	if (opcode_index == -1) {
		if (!ichspi_lock)
			opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
		if (opcode_index == -1) {
Stefan Tauner's avatar
Stefan Tauner committed
			msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n",
				 cmd);
	}

	opcode = &(curopcodes->opcode[opcode_index]);

	/* The following valid writecnt/readcnt combinations exist:
	 * writecnt  = 4, readcnt >= 0
	 * writecnt  = 1, readcnt >= 0
	 * writecnt >= 4, readcnt  = 0
	 * writecnt >= 1, readcnt  = 0
	 * writecnt >= 1 is guaranteed for all commands.
	 */
	if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
	    (writecnt != 4)) {
		msg_perr("%s: Internal command size error for opcode "
			"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
			writecnt);
		return SPI_INVALID_LENGTH;
	}
	if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
	    (writecnt != 1)) {
		msg_perr("%s: Internal command size error for opcode "