Newer
Older
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2013 Ricardo Ribalda - Qtechnology A/S
* Copyright (C) 2011, 2014 Stefan Tauner
*
* Based on nicinctel_spi.c and ichspi.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Datasheet: Intel 82580 Quad/Dual Gigabit Ethernet LAN Controller Datasheet
* 3.3.1.4: General EEPROM Software Access
* 4.7: Access to shared resources (FIXME: we should probably use this semaphore interface)
* 7.4: Register Descriptions
*/
/*
* Datasheet: Intel Ethernet Controller I210: Datasheet
* 8.4.3: EEPROM-Mode Read Register
* 8.4.6: EEPROM-Mode Write Register
* Write process inspired on kernel e1000_i210.c
*/
#include <stdlib.h>
#include <unistd.h>
#include "flash.h"
#include "spi.h"
#include "programmer.h"
#include "hwaccess.h"
#define PCI_VENDOR_ID_INTEL 0x8086
#define MEMMAP_SIZE 0x1c /* Only EEC, EERD and EEWR are needed. */
#define EEC 0x10 /* EEPROM/Flash Control Register */
#define EERD 0x14 /* EEPROM Read Register */
#define EEWR 0x18 /* EEPROM Write Register */
/* EPROM/Flash Control Register bits */
#define EE_SCK 0
#define EE_CS 1
#define EE_SI 2
#define EE_SO 3
#define EE_REQ 6
#define EE_GNT 7
#define EE_PRES 8
#define EE_SIZE 11
#define EE_SIZE_MASK 0xf
#define EE_FLUPD 23
#define EE_FLUDONE 26
/* EEPROM Read Register bits */
#define EERD_START 0
#define EERD_DONE 1
#define EERD_ADDR 2
#define EERD_DATA 16
/* EEPROM Write Register bits */
#define EEWR_CMDV 0
#define EEWR_DONE 1
#define EEWR_ADDR 2
#define EEWR_DATA 16
#define BIT(x) (1<<x)
static uint8_t *nicintel_eebar;
static struct pci_dev *nicintel_pci;
static bool done_i20_write = false;
#define UNPROG_DEVICE 0x1509
/*
* Warning: is_i210() below makes assumptions on these PCI ids.
* It may have to be updated when this list is extended.
*/
const struct dev_entry nics_intel_ee[] = {
{PCI_VENDOR_ID_INTEL, 0x150e, OK, "Intel", "82580 Quad Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, 0x150f, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Fiber)"},
{PCI_VENDOR_ID_INTEL, 0x1510, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Backplane)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Ext. PHY)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Dual Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, UNPROG_DEVICE, OK, "Intel", "Unprogrammed 82580 Quad/Dual Gigabit Ethernet Controller"},
{PCI_VENDOR_ID_INTEL, 0x1531, NT, "Intel", "I210 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1532, NT, "Intel", "I211 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1533, OK, "Intel", "I210 Gigabit Network Connection"},
{PCI_VENDOR_ID_INTEL, 0x1536, NT, "Intel", "I210 Gigabit Network Connection SERDES Fiber"},
{PCI_VENDOR_ID_INTEL, 0x1537, NT, "Intel", "I210 Gigabit Network Connection SERDES Backplane"},
{PCI_VENDOR_ID_INTEL, 0x1538, NT, "Intel", "I210 Gigabit Network Connection SGMII"},
{PCI_VENDOR_ID_INTEL, 0x1539, NT, "Intel", "I211 Gigabit Network Connection"},
{0},
};
static inline bool is_i210(uint16_t device_id)
{
return (device_id & 0xfff0) == 0x1530;
}
static int nicintel_ee_probe_i210(struct flashctx *flash)
{
/* Emulated eeprom has a fixed size of 4 KB */
flash->chip->total_size = 4;
flash->chip->page_size = flash->chip->total_size * 1024;
flash->chip->tested = TEST_OK_PREW;
flash->chip->gran = write_gran_1byte_implicit_erase;
flash->chip->block_erasers->eraseblocks[0].size = flash->chip->page_size;
flash->chip->block_erasers->eraseblocks[0].count = 1;
return 1;
}
static int nicintel_ee_probe_82580(struct flashctx *flash)
{
if (nicintel_pci->device_id == UNPROG_DEVICE)
flash->chip->total_size = 16; /* Fall back to minimum supported size. */
else {
uint32_t tmp = pci_mmio_readl(nicintel_eebar + EEC);
tmp = ((tmp >> EE_SIZE) & EE_SIZE_MASK);
switch (tmp) {
case 7:
flash->chip->total_size = 16;
break;
case 8:
flash->chip->total_size = 32;
break;
default:
msg_cerr("Unsupported chip size 0x%x\n", tmp);
return 0;
}
}
flash->chip->tested = TEST_OK_PREW;
flash->chip->gran = write_gran_1byte_implicit_erase;
flash->chip->block_erasers->eraseblocks[0].size = (EE_PAGE_MASK + 1);
flash->chip->block_erasers->eraseblocks[0].count = (flash->chip->total_size * 1024) / (EE_PAGE_MASK + 1);
return 1;
}
#define MAX_ATTEMPTS 10000000
static int nicintel_ee_read_word(unsigned int addr, uint16_t *data)
{
uint32_t tmp = BIT(EERD_START) | (addr << EERD_ADDR);
pci_mmio_writel(tmp, nicintel_eebar + EERD);
/* Poll done flag. 10.000.000 cycles seem to be enough. */
uint32_t i;
for (i = 0; i < MAX_ATTEMPTS; i++) {
tmp = pci_mmio_readl(nicintel_eebar + EERD);
if (tmp & BIT(EERD_DONE)) {
*data = (tmp >> EERD_DATA) & 0xffff;
return 0;
}
}
return -1;
}
static int nicintel_ee_read(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
/* The NIC interface always reads 16 b words so we need to convert the address and handle odd address
* explicitly at the start (and also at the end in the loop below). */
if (addr & 1) {
if (nicintel_ee_read_word(addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
}
while (len > 0) {
if (nicintel_ee_read_word(addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
if (len > 0) {
*buf++ = (data >> 8) & 0xff;
addr++;
len--;
}
}
return 0;
}
static int nicintel_ee_write_word_i210(unsigned int addr, uint16_t data)
{
uint32_t eewr;
eewr = addr << EEWR_ADDR;
eewr |= data << EEWR_DATA;
eewr |= BIT(EEWR_CMDV);
pci_mmio_writel(eewr, nicintel_eebar + EEWR);
programmer_delay(5);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(nicintel_eebar + EEWR) & BIT(EEWR_DONE))
return 0;
return -1;
}
static int nicintel_ee_write_i210(struct flashctx *flash, const uint8_t *buf,
unsigned int addr, unsigned int len)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
{
done_i20_write = true;
if (addr & 1) {
uint16_t data;
if (nicintel_ee_read_word(addr / 2, &data)) {
msg_perr("Timeout reading heading byte\n");
return -1;
}
data &= 0xff;
data |= (buf ? (buf[0]) : 0xff) << 8;
if (nicintel_ee_write_word_i210(addr / 2, data)) {
msg_perr("Timeout writing heading word\n");
return -1;
}
if (buf)
buf ++;
addr ++;
len --;
}
while (len > 0) {
uint16_t data;
if (len == 1) {
if (nicintel_ee_read_word(addr / 2, &data)) {
msg_perr("Timeout reading tail byte\n");
return -1;
}
data &= 0xff00;
data |= buf ? (buf[0]) : 0xff;
} else {
if (buf)
data = buf[0] | (buf[1] << 8);
else
data = 0xffff;
}
if (nicintel_ee_write_word_i210(addr / 2, data)) {
msg_perr("Timeout writing Shadow RAM\n");
return -1;
}
if (buf)
buf += 2;
if (len > 2)
len -= 2;
else
len = 0;
addr += 2;
}
return 0;
}
static int nicintel_ee_erase_i210(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_i210(flash, NULL, addr, len);
}
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
static int nicintel_ee_bitset(int reg, int bit, bool val)
{
uint32_t tmp;
tmp = pci_mmio_readl(nicintel_eebar + reg);
if (val)
tmp |= BIT(bit);
else
tmp &= ~BIT(bit);
pci_mmio_writel(tmp, nicintel_eebar + reg);
return -1;
}
/* Shifts one byte out while receiving another one by bitbanging (denoted "direct access" in the datasheet). */
static int nicintel_ee_bitbang(uint8_t mosi, uint8_t *miso)
{
uint8_t out = 0x0;
int i;
for (i = 7; i >= 0; i--) {
nicintel_ee_bitset(EEC, EE_SI, mosi & BIT(i));
nicintel_ee_bitset(EEC, EE_SCK, 1);
if (miso != NULL) {
uint32_t tmp = pci_mmio_readl(nicintel_eebar + EEC);
if (tmp & BIT(EE_SO))
out |= BIT(i);
}
nicintel_ee_bitset(EEC, EE_SCK, 0);
}
if (miso != NULL)
*miso = out;
return 0;
}
/* Polls the WIP bit of the status register of the attached EEPROM via bitbanging. */
static int nicintel_ee_ready(void)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_RDSR, NULL);
uint8_t rdsr;
nicintel_ee_bitbang(0x00, &rdsr);
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
if (!(rdsr & SPI_SR_WIP)) {
return 0;
}
}
return -1;
}
/* Requests direct access to the SPI pins. */
static int nicintel_ee_req(void)
{
uint32_t tmp;
nicintel_ee_bitset(EEC, EE_REQ, 1);
tmp = pci_mmio_readl(nicintel_eebar + EEC);
if (!(tmp & BIT(EE_GNT))) {
msg_perr("Enabling eeprom access failed.\n");
return 1;
}
nicintel_ee_bitset(EEC, EE_SCK, 0);
return 0;
}
static int nicintel_ee_write_82580(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
if (nicintel_ee_req())
return -1;
int ret = -1;
if (nicintel_ee_ready())
goto out;
while (len > 0) {
/* WREN */
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_WREN, NULL);
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
/* data */
nicintel_ee_bitset(EEC, EE_CS, 0);
nicintel_ee_bitbang(JEDEC_BYTE_PROGRAM, NULL);
nicintel_ee_bitbang((addr >> 8) & 0xff, NULL);
nicintel_ee_bitbang(addr & 0xff, NULL);
while (len > 0) {
nicintel_ee_bitbang((buf) ? *buf++ : 0xff, NULL);
len--;
addr++;
break;
}
nicintel_ee_bitset(EEC, EE_CS, 1);
programmer_delay(1);
if (nicintel_ee_ready())
goto out;
}
ret = 0;
out:
nicintel_ee_bitset(EEC, EE_REQ, 0); /* Give up direct access. */
return ret;
}
static int nicintel_ee_erase_82580(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_82580(flash, NULL, addr, len);
}
static const struct opaque_master opaque_master_nicintel_ee_82580 = {
.probe = nicintel_ee_probe_82580,
.read = nicintel_ee_read,
.write = nicintel_ee_write_82580,
.erase = nicintel_ee_erase_82580,
};
static const struct opaque_master opaque_master_nicintel_ee_i210 = {
.probe = nicintel_ee_probe_i210,
.read = nicintel_ee_read,
.write = nicintel_ee_write_i210,
.erase = nicintel_ee_erase_i210,
};
static int nicintel_ee_shutdown_i210(void *arg)
{
if (!done_i20_write)
return 0;
uint32_t flup = pci_mmio_readl(nicintel_eebar + EEC);
flup |= BIT(EE_FLUPD);
pci_mmio_writel(flup, nicintel_eebar + EEC);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(nicintel_eebar + EEC) & BIT(EE_FLUDONE))
return 0;
msg_perr("Flash update failed\n");
return -1;
}
static int nicintel_ee_shutdown_82580(void *eecp)
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
{
uint32_t old_eec = *(uint32_t *)eecp;
/* Request bitbanging and unselect the chip first to be safe. */
if (nicintel_ee_req() || nicintel_ee_bitset(EEC, EE_CS, 1))
return -1;
/* Try to restore individual bits we care about. */
int ret = nicintel_ee_bitset(EEC, EE_SCK, old_eec & BIT(EE_SCK));
ret |= nicintel_ee_bitset(EEC, EE_SI, old_eec & BIT(EE_SI));
ret |= nicintel_ee_bitset(EEC, EE_CS, old_eec & BIT(EE_CS));
/* REQ will be cleared by hardware anyway after 2 seconds of inactivity on the SPI pins (3.3.2.1). */
ret |= nicintel_ee_bitset(EEC, EE_REQ, old_eec & BIT(EE_REQ));
free(eecp);
return ret;
}
int nicintel_ee_init(void)
{
if (rget_io_perms())
return 1;
struct pci_dev *dev = pcidev_init(nics_intel_ee, PCI_BASE_ADDRESS_0);
if (!dev)
return 1;
uint32_t io_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_0);
if (!io_base_addr)
return 1;
if (!is_i210(dev->device_id)) {
nicintel_eebar = rphysmap("Intel Gigabit NIC w/ SPI EEPROM", io_base_addr, MEMMAP_SIZE);
if (!nicintel_eebar)
return 1;
nicintel_pci = dev;
if ((dev->device_id != UNPROG_DEVICE)) {
uint32_t eec = pci_mmio_readl(nicintel_eebar + EEC);
/* C.f. 3.3.1.5 for the detection mechanism (maybe? contradicting
the EE_PRES definition),
and 3.3.1.7 for possible recovery. */
if (!(eec & BIT(EE_PRES))) {
msg_perr("Controller reports no EEPROM is present.\n");
return 1;
}
uint32_t *eecp = malloc(sizeof(uint32_t));
if (eecp == NULL)
return 1;
*eecp = eec;
if (register_shutdown(nicintel_ee_shutdown_82580, eecp))
return 1;
}
return register_opaque_master(&opaque_master_nicintel_ee_82580);
} else {
nicintel_eebar = rphysmap("Intel i210 NIC w/ emulated EEPROM",
io_base_addr + 0x12000, MEMMAP_SIZE);
if (!nicintel_eebar)
return 1;
if (register_shutdown(nicintel_ee_shutdown_i210, NULL))
return 1;
return register_opaque_master(&opaque_master_nicintel_ee_i210);
}
return 1;